

REACh/SUGARBEET ADVANCEMENT COMMITTEE LIST 2018 VOTING MEMBERSHIP

23 Voting Members

Company	Name	Terms Remaining	Expire		
	Jim Ruhlman (5 th Member)				
Michigan Sugar Common.	Dennis Bischer	Permanent			
Michigan Sugar Company	Jim Stewart				
	Corey Guza				
	Kerrek Griffes	1	2019		
Michigan Sugar Agriculturists (4 years)	Kevin Messing	3	2021		
(1 yours)	Cassie Sneller	4	2022		
Michigan Sugar Company	Darrin Siemen (Secretary)	1	2019		
District Board Members	Mark Sylvester (Chairman)	1	2019		
(1 year)	Peter Maxwell	1	2019		
	Chris Ziehm	1	2019		
Michigan Sugar Company	Kurt Hrabal	3	2021		
At Large Growers (3 years)	Scott Roggenbuck (Treasurer)	2	2020		
	Andy Shaffner (Vice President)	1	2019		
Michigan State University,	Linda Hanson	2	2020		
University of Guelph, and USDA		1	2019		
(3 years)	Christy Sprague	1	2019		
Sugar Beet Seed Company (2 years)	Rob Gerstenberger	1	2019		
Agri-Business Retail (2 years)	Jacob Hecht	1	2019		
Agri-Business Manufacturing (2 years)	David Reif	2	2020		
Michigan Sugar Company	Clay Crumbaugh	1	2019		
Board of Directors (1 year)	Kent Houghtaling	1	2019		
SBA Director		Permanent			

Ex-Officio Members

Company	Name				
Chairman of Board of Directors - MSC	Rick Gerstenberger				
CEO of Michigan Sugar Company	Mark Flegenheimer				

MISSION STATEMENT:

The mission of the *Michigan Sugarbeet Research Education Advisory Council* is to be the central trusted source of agronomic information for the sugarbeet industry.

The council will provide direction for the Michigan-Ontario sugarbeet researchers and assemble and distribute research/agronomy information.

Cooperative educational efforts will be conducted with the goal of improving productivity and profitability for all stakeholders.

AgBioResearch

2018 Research Results

Table of Contents

Table of Contents	
Rhizoctonia	
Registered and Experimental Fungicides for Control	
of RhizoctoniaMSC	3-4
Efficacy of Quadris when Applied with Different Water Volumes	
Fairgrove Location (Guza)MSC	5-6
Pinconning Location (Wackerle)MSC	7-8
Broadcast Quadris Applications for Control of RhizoctoniaMSC	9-10
Control of Rhizoctonia Root Rot with Serenade ASO Tank	
Mix TreatmentsMSC	11-12
Moncut SC Fungicide for Control of RhizoctoniaMSC	13-14
Rhizoctonia Root Rot Control with an Experimental	
SDHI FungicideMSC	15-16
In-furrow and banded fungicide treatmentsMSU	17
Xanthion In-Furrow Fungicide (M&K Farms)SBA	18
Xanthion In-Furrow Fungicide (Spartan Acres Farms)SBA	19
Propulse In-Furrow Fungicide (Meylan Farms)SBA	20
Propulse In-Furrow Fungicide (LAKKE Ewald Farms)SBA	21
, , , , , , , , , , , , , , , , , , , ,	
Cercospora and Alternaria	
Fungicide Application Timings (BEETcast)	22.22
Average of 2 Locations	22-23
Richville Location (Auernhamer)MSC	24-28
Elkton/Pigeon Location (Laker)MSC	29-33
Alternaria and Cercospora Leafspot control with Registered	04.00
and Experimental Fungicides Bach Location (Answer Plot)MSC	34-36
Elkton/Pigeon Location (Laker)MSC	37-39
Akron Location (Wark)MSC	40-42
Control of Cercospora and Alternaria with Tank Mix Fungicide Treatme	
Average of 6 Locations and 3 years	43-44
Average of 2 Locations	45-49 50-53
Elkton/Pigeon Location (Laker)	54-57
Pinconning Location (Wackerle) MSC	54-57
Control of Cercospora Utilizing Fungicides Approved for use in CanadaMSC	58-61
Control of Cercospora Leafspot in Sugarbeets with	30-01
Several Fungicide ProgramsMSC	62-65
Protectant Fungicides for Control of CercosporaMSC	
·	66-70
Control of Cercospora Leafspot with Fungicides using	71-72
Six Different Spray TipsMSC Evaluate Sticker / Spreaders added to Fungicides	11-12
	72 75
Average of 2 Locations	73-75
Richville Location (Auernhamer)	76-81
Elkton/Pigeon Location (Laker)MSC	82-87
Effect of Copper / Roundup Applications on	00
Sugarbeet Leaf InjuryMSC	88
Cercospora leaf spot: cultivar and fungicide program,	00.00
Ridgetown, 2018	89-90
Cercospora leaf spot: deposition aids and carrier volume,	04
Ridgetown, 2018	91
Evaluation of foliar fungicide treatments to	00.00
manage Cercospora	92-93
In-vitro fungicide sensitivity of Cercospora beticola isolates	04.05
from sugarbeet 2018	94-95
In-vitro fungicide sensitivity of Alternaria spp. isolates	00.0=
from sugarbeet 2018MSU/USDA	96-97

RESEARCH SPECIALISTS:

MICHIGAN SUGAR COMPANY

Corey Guza, Pl	nD, Director of Agronomy
Cell	989.415.3419
Email	corey.guza@michigansugar.com

Jim Stewart, Director of Research

Dennis Bischer, Agronomist

Brian Groulx, Research Assistant

MICHIGAN STATE UNIVERSITY

Tom Wenzel, Research Technician

CORPORATE AGRICULTURAL OFFICE

122 UpTown Dr. Suite 300 Bay City, MI 48708 Telephone (989) 686-0161 - Fax (989) 671-3714

2018 Research Results

Table of Contents

Sugarbeet Seed Treatments Commercial Seed Treatment for Control of Rhizoctonia Root Ro	ot	
Breckenridge Location (Bebow)	.MSC	98-100
Freeland Location (Shaffner)		101-103
Frankenmuth Location (Blumfield)		104-105
Freeland Location (Shaffner)		106-107
Evaluation of fungicide seed treatments to		
manage Aphanomyces	MSU	108
Systiva Seed Treatment (Wegener Farms)		109
Systiva Seed Treatment (VanDenBoom Farms)		110
		110
Nematode		
In-furrow Abamectin treatments at planting for		
nematode management	.MSU	111
In-furrow and/or foliar pesticide applications for		
nematode management	.MSU	112
Oilseed radish cover crop, pre-plant application timing/rate		
and in-furrow pesticide applications for		
nematode management	.MSU	113
Fertilizer, Foliar		
Application Methods for Applying Nitrogen	MSC	114-117
Nitrogen Rates by Harvest Date Comparison		118-123
Plant Tuff (Silicon Fertilizer) Applications		124
Pop-up Fertilizer on Sand (Wishowski Farms)		125
N Demand & Boron with Leafspot Sprays (Richmond Brothers).		126
Evaluating Sugarbeet Nitrogen Application Strategies		127
Sugarbeet Nitrogen Response Following Corn	.MSU	128
Does Sugarbeet Row Spacing Affect the Need for		
Starter Nitrogen?	.MSU	129
Sugarbeet Response to Starter Fertilizer, N Rate,		
and Plant Population	.MSU	130-131
Weed Control		
Sugarbeet tolerance to a potential new herbicide, tiafenacil	MSH	132
Sugarbeet tolerance to postemergence applications of	ivioo	102
Ultra Blazer tank-mixtures with glyphosate	MCII	133
Rotational crop safety with postemergence applications	IVISU	133
	MOLL	101
	.MSU	134
Sugarbeet tolerance to overlapping residual herbicide programs		135
Waterhemp control with overlapping residual herbicide program	ISINISU	136
Date of Harvest		
Effect of Harvest Date on Sugarbeet Yield, Quality, and Grower	Income	9
Average of 9 years and Average of 4 locations		137
Blumfield and Freeland Locations		138
Quanicassee and Sandusky Locations		139
•		.00
Population	05.4	
Population Trial (Sylvester Farms)		140
Population on Sand (Wishowski Farms)	SBA	141

Evaluate Registered and Experimental Fungicides for Control of Rhizoctonia Root Rot in Sugarbeets

MICHIGAN SUGAR Bebow, Breckenridge, MI - 2018

(Page 1 of 2)

Trial Quality: Fair Variety: SX-1245N Planted: May 8 Harvested: Sep 14

Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Clay Loam % OM: 2.7 pH: 6.4 CEC: 13.3 **P:** above opt **K:** above opt

Mn: high B: med Added N: 140 lbs Prev Crop: Soybeans Rhizoc Level: Very High Cerc Control: Good

Problems: High disease level Seeding Rate: 4.5 inches

Rainfall: 20.5 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa- Foliar 7" band Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Treatment	Rate/A	Applic Timing		Dead Beets / 100 ft		Rating* 10	Beets / 100 ft			
				Av	′g	A	/g	3-Sep	11-Jun		
23	Quadris	10 fl oz	In-Fur	29.5	f	7.3	а	220	258		
	Quadris	14.25 fl oz	10-12 lf								
3	Quadris	13 fl oz	In-Fur	30.8	ef	7.1	abc	188	227		
21	Quadris	10 fl oz	In-Fur	36.4	def	7.1	abc	195	244		
	Quadris	14.25 fl oz	4-6 If								
10	Xanthion A	1.8 fl oz	In-Fur	46.4	c-f	6.9	a-f	183	240		
	Xanthion B	9 fl oz	In-Fur								
27	Gem SC	3.6 fl oz	8 If	46.7	b-f	6.1	ij	190	238		
22	Quadris	10 fl oz	In-Fur	47.0	b-f	7.2	ab	188	246		
	Quadris	14.25 fl oz	8 If								
5	Moncut SC	24 fl oz	In-Fur	48.1	b-f	6.7	b-j	188	241		
31	Propulse	13.6 fl oz	8 If	48.3	b-f	6.7	a-h	174	226		
20	Quadris	14.25 fl oz	10-12 lf	49.8	b-f	6.6	b-j	172	230		
18	Quadris	14.25 fl oz	4-6 If	52.0	b-f	6.9	a-f	194	259		
25	Moncut SC	24 fl oz	8 If	52.5	b-f	6.9	a-f	206	268		
6	Proline 480 SC	5.7 fl oz	In-Fur	54.5	b-f	7.0	a-d	196	254		
12	Propulse	10 fl oz	In-Fur	56.1	b-f	6.7	a-i	164	231		
14	Serenade ASO	2 qt	In-Fur	56.6	b-f	6.8	a-h	193	262		
	Quadris	10 fl oz	In-Fur								
24	Moncut SC	18 fl oz	8 If	58.1	b-f	6.9	а-е	197	259		
2	Quadris	10 fl oz	In-Fur	58.6	b-f	6.8	a-g	186	258		

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*} Vigor: 0 to 10 ratings, 10 is best.

Evaluate Registered and Experimental Fungicides for Control of Rhizoctonia Root Rot in Sugarbeets

MICHIGAN SUGAR Bebow, Breckenridge, MI - 2018

(Page 2 of 2)

No.	Treatment	Rate/A	Applic Timing	100 ft		100 ft 0-10			Beets / 100 ft			
				Av	g	A۱	/g	3-Sep	11-Jun			
15	Proline 480 SC	5.7 fl oz	In-Fur	60.3	b-f	6.6	b-j	179	251			
	Quadris	10 fl oz	In-Fur									
9	Priaxor	8 fl oz	In-Fur	60.3	b-f	6.4	c-j	173	251			
28	Headline SC	12 fl oz	8 If	61.9	b-f	6.1	hij	168	238			
13	Propulse	13.6 fl oz	In-Fur	63.0	b-f	6.7	a-h	169	240			
8	Headline SC	12 fl oz	In-Fur	64.1	64.1 b-e		f-j	153	227			
30	Propulse	13.6 fl oz	8 If	65.5 bcd		6.7	a-h	170	255			
4	Moncut SC	18 fl oz	In-Fur	67.6	bcd	6.5	b-j	165	232			
19	Quadris	14.25 fl oz	8 If	68.3	bcd	6.6	b-j	164	247			
1	Quadris	7 fl oz	In-Fur	69.1	a-d	6.6	b-j	170	247			
7	Gem SC	3.6 fl oz	In-Fur	69.8	a-d	6.3	e-j	174	258			
26	Proline 480 SC	5.7 fl oz	8 If	71.7	abc	6.4	d-j	182	274			
29	Priaxor	8 fl oz	8 If	73.6	abc	6.6	b-j	171	247			
34	Untreated			100.5	а	5.0	k	146	253			
Δ.,	0.000			59.	56	6.1	20	178.5	247.2			
	Average					6.60						
_	D 5%			27.30		0.51		n.s.	n.s.			
CV	⁷ %			32	./	5.	6	18.8	11.9			

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Quadris, Moncut, Proline, Gem, Headline, Priaxor and other fungicides were evaluated for control of Rhizoctonia root rot (*Rhizoctonia solani AG 2-2 IIIB*) in this small plot replicated trial. The disease pressure was extremely high and overwhelmed even the best treatments. Due to the high disease level and field variation sugarbeet yield and quality measurements are not reported. As in past years, Quadris at 10 or more fl oz/A applied In-furrow in a 3.5 inch T-band followed by a foliar Quadris application provided the best overall results. Quadris applied In-furrow at 7 fl oz/A failed to control the disease. The application timing of Quadris banded over the row at 14.25 fl oz/A did not seem to matter. Several other fungicide treatments provided adequate control, considering the high level of disease.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*} Vigor: 0 to 10 ratings, 10 is best.

Evaluate the Efficacy of Quadris In-furrow when applied with Different Water Volumes

Guza, Fairgrove, MI - 2018

(Page 1 of 4)

Trial Quality: Fair Variety: SX-1245N

Planted: May 2 Harvested: Oct 4

Plots: 6 rows X 38 ft, 4 reps **Row Spacing:** 22 inches

Application: Monosem 6-row Agronomy Planter, IF - 3.5" band

Soil Info: Sandy Loam

% OM: 3.7 **pH:** 7.6 **CEC:** 14.7 **P:** above opt **K:** above opt

Mn: high B: med
Added N: 135 lbs
Prev Crop: Wheat

Rhizoc Level: Low-Moderate

Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches **Rainfall:** 14.1 inches

No.	Treatment	Rate/A	GPA	Applic Timing	Dead Beets / 100 ft	Net \$/A	Vigor Rating*** 0-10		/ 100 ft
		- 0			29-Aug	0.1 -1.1	31-Jul	22-May	26-Jul
1	Quadris	7 fl oz	9.9	In-Fur	2.4	\$1,544	8.2	233	228
6	Quadris	13 fl oz	7.1	In-Fur	2.7	\$1,561	8.1	233	219
9	Quadris	13 fl oz	5.5	In-Fur	2.8	\$1,515	8.1	227	217
8	Quadris	10 fl oz	5.5	In-Fur	3	\$1,514	8.0	240	224
5	Quadris	10 fl oz	7.1	In-Fur	3.3	\$1,527	7.9	233	231
4	Quadris	7 fl oz	7.1	In-Fur	3.5	\$1,551	8.2	233	231
2	Quadris	10 fl oz	9.9	In-Fur	3.5	\$1,564	8.0	231	225
7	Quadris	7 fl oz	5.5	In-Fur	4.4	\$1,526	8.0	233	214
3	Quadris	13 fl oz	9.9	In-Fur	4.4	\$1,492	7.9	222	217
10	Untreated				12.6	\$1,353	7.7	232	227
Ave	erage				4.26	\$1,514.8	7.98	231.8	223.5
	O 5%				n.s.	n.s	n.s.	n.s.	n.s.
CV					133.46	7.2			5.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{***} Vigor: 0 to 10 ratings, 10 is best

Evaluate the Efficacy of Quadris In-furrow when applied with Different Water Volumes

Guza, Fairgrove, MI - 2018

(Page 2 of 4)

No.	Treatment	Rate/A	GPA	Applic Timing	Dead Beets / 100 ft 29-Aug	Net \$/A	RWSA	RWST	T/A	% SUC	% CJP
1	Quadris	7 fl oz	9.9	In-Fur	2.4	\$1,544	9228	238	38.8	16.3	94.8
6	Quadris	13 fl oz	7.1	In-Fur	2.7	\$1,561	9368	238	39.3	16.3	94.9
9	Quadris	13 fl oz	5.5	In-Fur	2.8	\$1,515	9093	243	37.4	16.4	95.4
8	Quadris	10 fl oz	5.5	In-Fur	3	\$1,514	9070	239	38.0	16.2	95.2
5	Quadris	10 fl oz	7.1	In-Fur	3.3	\$1,527	9274	243	38.2	16.3	95.1
4	Quadris	7 fl oz	7.1	In-Fur	3.5	\$1,551	9271	237	39.2	16.2	95.0
2	Quadris	10 fl oz	9.9	In-Fur	3.5	\$1,564	9365	243	38.6	16.5	95.0
7	Quadris	7 fl oz	5.5	In-Fur	4.4	\$1,526	9122	237	38.6	16.1	95.2
3	Quadris	13 fl oz	9.9	In-Fur	4.4	\$1,492	8958	239	37.5	16.2	95.3
10	Untreated				12.6	\$1,353	8044	226	35.6	15.6	94.7
Ave	erage				4.26	\$1,514.8	9107.0	238.0	38.2	16.2	95.0
LSI	O 5%				n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
CV	%				133.5	3.1	8.1	4.61	5.7	4.0	0.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Quadris was applied In-furrow at 7, 10 and 13 fl oz/A and in 5.5, 7.1 and 9.9 gallons of water per acre in this Rhizoctonia, (Rhizoctonia solani AG 2-2 IIIB) root rot trial. Two trials were conducted in 2018. There were no significant differences between treatments for disease control, yield or quality. This trial will be repeated in 2019.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate the Efficacy of Quadris In-furrow when applied with Different Water Volumes

Wackerle, Pinconning, MI -2018

(Page 3 of 4)

Trial Quality: Fair Variety: SX-1245N Planted: May 14

Harvested: Sep 18 Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Loam

% OM: 5.3 pH: 7.1 CEC: 15.9 P: above opt K: above opt

Mn: med B: med Added N: 130 lbs Prev Crop: Wheat

Application: Monosem 6-row Agronomy Planter, In-Fur, 3.5" band

Seeding Rate: 4.5 inches Rainfall: 11.6 inches

Cerc Control: Good

Problems: None

Rhizoc Level: Medium-High

No.	Treatment	Rate/A	GPA	Applic Timing	Dead B / 100 ft						Net \$/A	Vigor Rating*** 0-10	Beets / 100 ft			
					21-Aı	ıg		5-Sep	2-Jun	1-Aug						
7	Quadris	7 fl oz	5.5	In- Fur	18.3	b	\$1,413 a	7.4	258 b	232						
6	Quadris	13 fl oz	7.1	In- Fur	18.5	b	\$1,395 a	7.5	255 b	238						
8	Quadris	10 fl oz	5.5	In- Fur	20.8	b	\$1,336 a	7.3	290 a	243						
3	Quadris	13 fl oz	9.9	In- Fur	23	b	\$1,415 a	7.6	253 a	222						
9	Quadris	13 fl oz	5.5	In- Fur	23.2	b	\$1,410 a	7.4	263 b	224						
5	Quadris	10 fl oz	7.1	In- Fur	24.3	b	\$1,402 a	7.3	282 b	253						
4	Quadris	7 fl oz	7.1	In- Fur	24.3	b	\$1,332 a	7.4	253 a	233						
2	Quadris	10 fl oz	9.9	In- Fur	26.8	b	\$1,345 a	7.4	286 b	245						
1	Quadris	7 fl oz	9.9	In- Fur	26.8	b	\$1,369 a	7.3	260 b	219						
10	Untreated				47.3	а	\$1,055 b	7.1	287 a	244						
A					25.2		¢4 0.47 4	7.00	200.0	225.4						
AVE	erage				25.3	ე	\$1,347.1	7.36	268.6	235.1						
LSD 5%					14.61		11.5	n.s.	13.6	n.s.						
CV	%				49.5	6	179.7	0.5	4.3	8.3						

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{***} Vigor: 0 to 10 ratings, 10 is best

Evaluate the Efficacy of Quadris In-furrow when applied with Different Water Volumes Wackerle, Pinconning, MI - 2018

(Page 4 of 4)

No.	Treatment	Rate/A	GPA	Applic Timing	Net \$/	A	RWSA		RWST		T/A		% SUC		% CJP
7	Quadris	7 fl oz	5.5	In-Fur	\$1,413	а	7566	а	214	а	35.3	а	14.9	а	94.3
6	Quadris	13 fl oz	7.1	In-Fur	\$1,395	а	7502	а	215	а	34.9	а	15.0	а	94.2
8	Quadris	10 fl oz	5.5	In-Fur	\$1,336	а	7170	а	214	а	33.5	а	14.9	а	94.3
3	Quadris	13 fl oz	9.9	In-Fur	\$1,415	а	7608	а	215	а	35.4	а	14.9	а	94.5
9	Quadris	13 fl oz	5.5	In-Fur	\$1,410	а	7584	а	215	а	35.2	а	15.0	а	94.2
5	Quadris	10 fl oz	7.1	In-Fur	\$1,402	а	7523	а	213	а	35.2	а	14.8	а	94.4
4	Quadris	7 fl oz	7.1	In-Fur	\$1,332	а	7134	а	215	а	33.1	а	15.0	а	94.2
2	Quadris	10 fl oz	9.9	In-Fur	\$1,345	а	7221	а	214	а	33.7	а	14.9	а	94.3
1	Quadris	7 fl oz	9.9	In-Fur	\$1,369	а	7331	а	214	а	34.2	а	14.9	а	94.3
10	Untreated				\$1,055	b	5620	b	201	b	28.0	b	14.2	b	93.8
۸۷۷۵	arago.				\$1,347	2	7225	0	213	1	33.8	6	14.87		94.25
AVE	Average				φ1,347	.∠	1223	.0	213). I	33.0	U	14.0) [94.20
LSI	LSD 5%					•	956.	9	7.	1	4.28	8	0.4	5	n.s.
CV	%				11.5		11.4	ļ	2.9	9	10.9	9	2.6	6	0.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Quadris was applied In-furrow at 7, 10 and 13 fl oz/A and in 5.5, 7.1 and 9.9 gallons of water per acre in this Rhizoctonia, (*Rhizoctonia solani* AG IIIB) root rot trial. Two trials were conducted in 2018. There were no significant differences between treatments for disease control, yield or quality. This trial will be repeated in 2019.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Broadcast Quadris Applications for Control of Rhizoctonia Root Rot in Sugarbeets

Maurer, Ruth, MI - 2018

(Page 1 of 2)

Trial Quality: Fair-Good Variety: B-12RR2N Planted: May 24 Harvested: Oct 11

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Soil Info: Loam % OM: 3.2 pH: 7.3 CEC: 12.6 P: above opt K: above opt

Mn: high B: med Added N: 135 lbs Prev Crop: Wheat

Rhizoc Level: Low Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches Rainfall: 16.4 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa - Foliar, 7" band

No.	Treatment	Rate/A	Applic Timing	Applic Date	Dead Beets / 100 ft	Net \$/A	Vigor Rating*** 0-10	Beets / 100 ft
					29-Aug		29-Aug	18-Aug
1	Quadris FI	14.25	8 If - band	29-Jun	0.6	\$1,327	7.5	176
4	Quadris FI	40	8 If - band	29-Jun	1.1	\$1,137	7.4	180
2	Quadris FI	15.5	8 If - band	29-Jun	1.7	\$1,200	7.8	173
22	UTC				2.0	\$1,241	7.7	169
3	Quadris FI	25	8 If - band	29-Jun	2.0	\$1,154	7.1	162
15	Quadris FI	25	12 If - broad	18-Jul	2.3	\$1,317	8.0	175
18	Quadris FI	15.5	18 If - broad	31-Jul	2.6	\$1,172	7.5	172
19	Quadris FI	25	18 lf - broad	31-Jul	3.2	\$1,192	7.5	172
7	Quadris FI	25	8 If - broad	29-Jun	3.4	\$1,256	7.6	176
16	Quadris FI	40	12 If - broad			\$1,201	8.0	172
11	Quadris FI	25	12 If - band	18-Jul	4.0	\$1,237	7.7	175
14	Quadris FI	15.5	12 If - broad	18-Jul	4.3	\$1,172	7.8	174
17	Quadris FI	14.25	18 If - broad	31-Jul	4.6	\$1,205	7.6	173
20	Quadris FI	40	18 lf - broad	31-Jul	4.9	\$1,245	7.7	185
6	Quadris FI	15.5	8 If - broad	29-Jun	5.7	\$1,201	7.5	169
13	Quadris FI	14.25	12 If - broad	18-Jul	5.7	\$1,139	7.3	162
5	Quadris FI	14.25	8 If - broad	29-Jun	6.0	\$1,168	7.2	161
10	Quadris FI	15.5	12 If - band	18-Jul	8.0	\$1,174	7.8	182
21	UTC				8.3	\$1,297	7.8	180
12	Quadris FI	40	12 If - band	18-Jul	8.3	\$1,153	7.8	169
8	Quadris FI	40	8 If - broad	29-Jun	9.5	\$1,132	7.7	182
9	Quadris FI	14.25	12 If - band	18-Jul	9.5	\$1,138	7.6	181
Δ	2,000				4.64	\$1,202.7	7.62	173.6
	erage D 5%				1.04 n.s.	η1,202. <i>1</i>	7.62 n.s.	
CV					99.3	11.3	5.2	n.s. 9.4
CV	70				99. 3	11.3	ე.∠	9.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{***} Vigor: 0 to 10 ratings, 10 is best

Evaluate Broadcast Quadris Applications for Control of Rhizoctonia

Maurer, Ruth, MI - 2018

(Page 2 of 2)

No.	Treatment	Rate/A	Applic Timing	Applic Date	Dead Beets / 100 29-Aug	Net \$/A	RWSA	RWST	T/A	% SUC	% CJP
1	Quadris FI	14.25	8 If - band	29-Jun	0.6	\$1,327	7811	241	32.3	16.2	95.6
4	Quadris FI	40	8 If - band	29-Jun	1.1	\$1,137	6867	229	30.0	15.5	95.6
2	Quadris FI	15.5	8 If - band	29-Jun	1.7	\$1,200	7078	235	29.9	15.9	95.8
22	UTC				2.0	\$1,241	7217	237	30.6	16.0	95.8
3	Quadris FI	25	8 If - band	29-Jun	2.0	\$1,154	6869	233	29.5	15.7	95.9
15	Quadris FI	25	12 lf - broad	18-Jul	2.3	\$1,317	7815	240	32.5	16.0	95.8
18	Quadris FI	15.5	18 lf - broad	31-Jul	2.6	\$1,172	6917	236	29.4	15.9	95.5
19	Quadris FI	25	18 lf - broad	31-Jul	3.2	\$1,192	7092	228	31.2	15.6	95.5
7	Quadris FI	25	8 If - broad	29-Jun	3.4	\$1,256	7462	235	31.6	15.9	95.5
16	Quadris FI	40	12 lf - broad	29-Jun	4.0	\$1,201	7242	227	32.0	15.5	95.6
11	Quadris FI	25	12 If - band	18-Jul	4.0	\$1,237	7352	233	31.5	15.9	95.6
14	Quadris FI	15.5	12 lf - broad	18-Jul	4.3	\$1,172	6912	222	31.0	15.2	95.5
17	Quadris FI	14.25	18 lf - broad	31-Jul	4.6	\$1,205	7101	222	31.9	15.0	95.6
20	Quadris FI	40	18 lf - broad	31-Jul	4.9	\$1,245	7498	240	31.3	16.1	95.7
6	Quadris FI	15.5	8 If - broad	29-Jun	5.7	\$1,201	7085	239	29.7	16.2	95.7
13	Quadris FI	14.25	12 lf - broad	18-Jul	5.7	\$1,139	6720	238	28.3	16.0	95.7
5	Quadris FI	14.25	8 If - broad	29-Jun	6.0	\$1,168	6887	237	28.9	16.0	95.7
10	Quadris FI	15.5	12 If - band	18-Jul	8.0	\$1,174	6928	219	31.7	15.0	95.4
21	UTC				8.3	\$1,297	7541	235	31.9	15.9	96.1
12	Quadris FI	40	12 If - band	18-Jul	8.3	\$1,153	6964	233	29.9	15.8	95.8
8	Quadris FI	40	8 If - broad	29-Jun	9.5	\$1,132	6839	225	30.5	15.4	95.7
9	Quadris FI	14.25	12 If - band	18-Jul	9.5	\$1,138	6709	231	29.0	15.8	95.5
Ave	erage				4.64	\$1,202.7	\$7,132.0	\$232.6	30.66	15.74	95.67
	D 5%		n.s.	n.s.	n.s	n.s.	n.s.	n.s.	n.s.		
CV	CV %					11.3	11.1	5.15	9.8	4.2	0.3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Quadris was applied at the 8 lf, 12 lf and 18 lf stage as banded and broadcast treatments for Rhizoctonia (*Rhizoctonia solani AG IIIB*) root rot control in this small plot replicated trial. The disease level was low. The Quadris label rate is based on band applications so to keep the same effective rate, broadcast rates were increased significantly. There were no significant differences with respect to disease control or yield. This trial will be repeated in 2019.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of Rhizoctonia Root Rot with Serenade ASO Tank Mix Treatments

Wackerle, Pinconning, MI - 2018

(Page 1 of 2)

Trial Quality: Good

Variety: SX-1245N Planted: May 14

Harvested: Sept 18
Plots: 6 Rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Loam

% OM: 5.3 **pH:** 7.1 **CEC:** 15.9 **P:** above opt **K:** above opt

Mn: med B: med Added N: 130 lbs Prev Crop: Wheat Rhizoc Level: Low-Moderate

Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches Rainfall: 11.6 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa - Foliar, 7" band

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Treatment	Rate/A	Applic Timing	Dead Beets / 100 ft 23-Jul		Net \$/A	0	Rating*** -10 Vg	Beets /	/ 100 ft
				23-	Jul			9	2-Jun	1-Aug
4	Serenade ASO	2 qt	In-Fur	3.2	b	\$1,310	8.4	а	289	255
Ш	Propulse	10 fl oz	In-Fur							
	Quadris Fl	14.25	8 If							
3	Serenade ASO	2 qt	In-Fur	3.7	b	\$1,256	8.3	а	294	267
	Proline 480 SC	5.7 fl	In-Fur							
	Quadris FI	14.25	8 If							
2	Serenade ASO	2 qt	In-Fur	6.2	b	\$1,182	8.2	а	298	264
Ш	Quadris FI	9.2 fl oz	In-Fur							
Ш	Proline 480 SC	5.7 fl oz	8 If							
1	Untreated			15.3	а	\$1,013	7.7	b	284	245
Av	erage			7.	10	\$1,190.1	8	3.10	291.2	257.9
LSD 5%		4.	50	n.s.	0.41		n.s.	n.s.		
CV	<i>'</i> %			44	ł.6	12.8	;	3.2	6.2	7.2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{***} Vigor: 0 to 10 ratings, 10 is best

Control of Rhizoctonia Root Rot with Serenade ASO Tank Mix Treatments

Wackerle, Pinconning, MI - 2018

(Page 2 of 2)

No.	Treatment	Rate/A	Applic Timing	Dea Beet 100 23-J	s / ft	Net \$/A	RWS	SA	RW	ST	T//	Ą	% S	UC	% CJP
4	Serenade ASO	2 qt	In-Fur	3.2	b	\$1,310	7289	а	212	ab	34.4	а	14.7	ab	94.5
Ш	Propulse	10 fl oz	In-Fur												
	Quadris Fl	14.25	8 If												
3	Serenade ASO	2 qt	In-Fur	3.7	b	\$1,256	6925	а	214	а	32.4	а	14.8	а	94.6
	Proline 480 SC	5.7 fl	In-Fur												
	Quadris FI	14.25	8 lf												
2	Serenade ASO	2 qt	In-Fur	6.2	b	\$1,182	6504	ab	219	а	29.6	ab	15.2	а	94.6
Ш	Quadris FI	9.2 fl oz	In-Fur												
	Proline 480 SC	5.7 fl oz	8 If												
	Untreated			15.3	а	\$1,013	5374	b	199	b	26.9	b	14.0	b	94.2
Av	erage			7.10	0	\$1,190.3	6522	2.8	211	.0	30.8	32	14.0	67	94.47
LS	LSD 5%		4.50	0	n.s.	1270	.4	12.	.7	5.2	2	0.7	'3	n.s.	
CV	′ %			44.0	6	12.8	12.4	4	3.9	9	10.	8	3.5	2	0.3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Serenade ASO biological fungicide (*Bacillis subtillis* strain), tank mixed with Quadris, Proline and Propulse, was evaluated for Rhizoctonia (*Rhizoctonia solani* AG 2-2 IIIB) root rot control in this small plot replicated trial. The disease level was low to moderate. There were no differences between treatments with respect to disease control, however, all of the treatments were an improvement over the untreated check.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Moncut SC Fungicide for Control of *Rhizoctonia* solani AG 2-2 IIIB in Sugarbeets

MICHIGAN SUGAR Bebow, Breckenridge, MI - 2018

(Page 1 of 2)

Trial Quality: Fair-Good Variety: SX-1245N Planted: May 8 Harvested: Sept 14

Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Clay Loam

% OM: 2.7 pH: 6.4 CEC: 13.3

P: above opt K: above opt

Mn: high B: med Added N: 140 lbs

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa - Foliar, 7" band

Rhizoc Level: High Cerc Control: Good

Problems: Row to row variability **Seeding Rate:** 4.5 inches

Rainfall: 20.5 inches

Prev Crop: Soybeans

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Treatment	Rate/A	Applic Timing	/ 100 ft		_	Rating* 10	Beets	/ 100 ft	
				Av	g	A	vg	11-Jul	3-Sep	
5	Quadris	10 fl oz	In- Fur	47.0	b	7.2	а	246	188	
	Quadris	14.3 fl oz	8 If							
3	Moncut SC	24 fl oz	In- Fur	48.1	b	6.7	ab	241	188	
7	Moncut SC	24 fl oz	8 If	52.5	b	6.9	ab	268	206	
6	Moncut SC	18 fl oz	8 If	58.1	b	6.9	ab	259	197	
1	Quadris	10 fl oz	In-Fur	58.6	b	6.8	ab	258	186	
2	Moncut SC	18 fl oz	In-Fur	67.6	b	6.5	b	232	165	
4	Quadris	14.3 fl oz	8 If	68.3	b	6.6	ab	247	164	
8	Untreated			100.6	а	5.0	С	253	146	
Av	Average			62.5	59	6.	56	250.2	180.1	
LSD 5%		29.3	38	0.53		n.s.	n.s.			
CV %		31.92		5.5		11.9	17.2			

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Moncut SC was compared to Quadris for control of Rhizoctonia (*Rhizoctonia solani* AG 2-2 IIIB) root rot at 2 locations in 2018. The disease level was very high at the Bebow site and low to moderate at the Wackerle location. Overall, Moncut compared favorably to Quadris and all fungicide treatments were an improvement over the untreated check plots. At the Breckenridge location yield and quality data is not included due to a high level of variation among plots. We have been evaluating Moncut for several years because the parent company is pursuing a sugarbeet label for Moncut. Over time, Moncut has performed nearly as well as Quadris and could be a replacement if resistance or other problems occur with Quadris. Moncut is an SDHI fungicide and Quadris is a strobilurin fungicide.

^{*} Vigor: 0 to 10 ratings, 10 is best

Evaluate Moncut SC Fungicide for Control of *Rhizoctonia* solani AG 2-2 IIIB in Sugarbeets

MICHIGAN SUGAR Wackerle, Pinconning, MI - 2018

(Page 2 of 2)

Trial Quality: Fair-Good Variety: B-12RR2N Planted: May 14

Harvested: Sept 18
Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Loam

% OM: 5.3 **pH:** 7.1 **CEC:** 15.9 **P:** above opt **K:** above opt

Mn: med B: med Added N: 130 lbs Prev Crop: Wheat Rhizoc Level: Low to Moderate

Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches Rainfall: 11.6 inches

Application: Monosem 6-row Agronomy Planter, compressed air, 30 psi, gpa - In-Fur, 3.5" band

No.	Treatment	Rate/A	Applic Timing	Dead Beets / 100 ft		Vigor Rating** 0-10		Beets / 100 ft				RWSA
				3-Au	g	A۱	/g	2-Ju	un	1-A	ug	
3	Quadris	9 fl oz	In-Fur	5.5	b	8.2	ab	275	а	258	а	6729
2	Moncut SC	25 fl oz	In-Fur	6.0	b	8.4	а	269	а	258	а	6539
	Preference	0.13%	In-Fur									
1	Untreated check			10.8	а	7.5	С	227	b	206	b	6225
Av	erage			7.43		8.0	03	257	' O	240	7	6497.7
_	LSD 5%		3.54		0.43		27.5		26.4		n.s.	
\vdash	CV %		37.34		3.6		7.4		7.5		8.8	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Moncut SC was compared to Quadris for control of Rhizoctonia (*Rhizoctonia solani* AG 2-2 IIIB) root rot at 2 locations in 2018. The disease level was very high at the Bebow site and low to moderate at the Wackerle location. Overall, Moncut compared favorably to Quadris and all fungicide treatments were an improvement over the untreated check plots. At the Breckenridge location yield and quality data is not included due to a high level of variation among plots. We have been evaluating Moncut for several years because the parent company is pursuing a sugarbeet label for Moncut. Over time, Moncut has performed nearly as well as Quadris and could be a replacement if resistance or other problems with Quadris. Moncut is an SDHI fungicide and Quadris is a strobilurin fungicide.

^{**} Vigor: 0 to 10 ratings, 10 is best

Rhizoctonia Root Rot Control with an Experimental SDHI Fungicide

Wackerle, Pinconning, MI - 2018

(Page 1 of 2)

Trial Quality: Good

Variety: B-12RR2N Planted: May 14 Harvested: Sept 18

Plots: 6 Rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Loam

% OM: 5.3 **pH**: 7.1 **CEC**: 15.9 **P**: above opt **K**: above opt

Mn: med B: med Added N: 130 lbs Prev Crop: Wheat Rhizoc Level: Low-Moderate

Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches Rainfall: 11.6 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa - Foliar, 7" band

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Treatment	Rate/A Appli Timin		Dead Beets / 100 ft	\$/A	Vigor Rating*** 0-10		/ 100 ft
				23-Jul		Avg	2-Jun	1-Aug
3	Exp. SDHI Fungicide	2.3 fl oz	In-Fur	4.5 b	\$1,282	8.1 ab	220 b	212 b
	NIS*	0.125%	In-Fur					
2	Exp. SDHI Fungicide	3.1 fl oz	In-Fur	5.3 b	\$1,203	7.8 bc	234 b	217 b
	NIS*	0.125%	In-Fur					
6	Quadris Fl	9 fl oz	In-Fur	5.5 b	\$1,270	8.2 ab	275 a	258 a
4	Exp. SDHI Fungicide	2.3 fl oz	In-Fur	5.8 b	\$1,322	8.1 ab	264 a	252 a
	NIS*	0.125%	In-Fur					
	Moncut SC	25 floz	In-Fur					
5	Moncut SC	25 fl oz	In-Fur	6.0 b	1235	8.4 ab	269 a	258 a
	NIS*	0.125%	In-Fur					
1	Untreated			10.8 a	\$1,175	7.5 c	227 b	206 b
Av	erage			6.29	\$1,247.8	8.01	248.1	234.1
LS	LSD 5%			3.54	n.s.	0.43	27.5	26.4
CV	CV %			37.3	8.8	3.6	7.4	7.5

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

\$/A: Assume a \$40 beet payment and trial average RWST

^{*} NIS: Preference

^{***} Vigor: 0 to 10 ratings, 10 is best

Rhizoctonia Root Rot Control with an Experimental SDHI Fungicide

Wackerle, Pinconning, MI - 2018

(Page 2 of 2)

No.	Treatment	Rate/A	Applic Timing	\$/A	RWSA	RWST	T/A	% SUC	% CJP
3	Exp. SDHI Fungicide	2.3 fl oz	In-Fur	\$1,282	6789	208	32.6	14.5	94.2
Ш	NIS*	0.125%	In-Fur						
2	Exp. SDHI Fungicide	3.1 fl oz	In-Fur	\$1,203	6371	215	29.6	14.9	94.6
	NIS*	0.125%	In-Fur						
6	Quadris FI	9 fl oz	In-Fur	\$1,270	6729	213	31.6	14.7	94.6
4	Exp. SDHI Fungicide	2.3 fl oz	In-Fur	\$1,322	7000	213	32.9	14.8	94.4
	NIS*	0.125%	In-Fur						
	Moncut SC	25 floz	In-Fur						
5	Moncut SC	25 fl oz	In-Fur	\$1,235	6539	210	31.2	14.6	94.4
Ш	NIS*	0.125%	In-Fur						
1	Untreated			\$1,175	6225	213	29.3	14.8	94.5
Av	erage			\$1,247.8	6609.0	211.9	31.20	14.73	94.46
LS	LSD 5%			n.s.	n.s.	n.s.	n.s.	n.s	n.s.
CV	<i>'</i> %			8.8	8.8	3.48	6.9	3.0	0.3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: An Experimental SDHI fungicide from Nichino Americas was evaluated for Rhizoctonia (*Rhizoctonia solani AG 2-2 IIIB*) root rot control and compared to Quadris and Moncut. The disease level was low to moderate. Overall, the SDHI compared favorably to Quadris and Moncut and was an improvement over the untreated check plots.

\$/A: Assume a \$40 beet payment and trial average RWST

^{*}NIS: Preference

Michigan State University

AgBioResearch

Evaluation of in-furrow and banded fungicides treatments to manage Rhizoctonia root and crown rot of sugar beet Jaime Willbur and Chris Bloomingdale, Michigan State University

Location: Frankenmuth (SVREC)	Treatment Timings: In-Furrow & Banded at 6-8 leaves
Planting Dates: April 26, 2018	Pesticides: see table
Soil Type: Loam	O.M.: 5.0 pH: 7.5
Replicates: 4	Variety: C-G351NT

Table 1. Disease index (root rating at harvest), seasonal plant loss, and yield parameters of fungicide programs.

No.	Treatment, Rate/A	Application	Disease	Total Plant	Yield (t/A)	Sugar (%)	RWST
		Type	Index (%) ^{a,b}	Loss (%)			
1	Serenade ASO 2 qt	In-Furrow,	16.1 c	17.3 d	13.9 a	12.7	171.3
	Quadris 13.9 fl oz	In-Furrow,					
	Proline 480SC 5.7 oz	Banded					
2	Experimental 12.8 fl oz	In-Furrow,	29.8 bc	23.0 cd	10.5 ab	12.8	173.9
	Quadris 13.9 fl oz	In-Furrow,					
	Proline 480SC 5.7 fl oz	Banded					
3	Proline 480SC 5.7 fl oz	In-Furrow,	31.2 bc	29.5 b-d	8.5 b	13.1	179.3
	Quadris 13.9 fl oz	In-Furrow					
4	Serenade ASO 2 qt	In-Furrow,	39.0 b	30.3 bc	8.9 b	12.7	172.0
	Propulse 10 fl oz	In-Furrow,					
	Quadris 13.9 fl oz	Banded					
5	Serenade ASO 2 qt	In-Furrow,	41.4 b	35.5 bc	9.6 ab	12.6	169.4
	Proline 480SC 5.7 fl oz	In-Furrow,					
	Quadris 13.9 fl oz	Banded					
6	Quadris 13.9 fl oz	In-Furrow	45.5 b	27.3 cd	7.2 bc	12.5	168.8
7	Propulse 10 fl oz	In-Furrow	45.9 b	41.3 b	5.7 bc	12.9	176.4
	_						
8	Non-Treated Control	N/A	77.7 a	71.8 a	1.7 c	12.6	170.9
a 0 1	1 011 11 4	1 44		1:00 +1	1 E'1 2 D	4 4 11 CD /	0.05) :0

^a Column values followed by the same letter are not significantly different based on Fisher's Protected LSD (α =0.05); if no letter, then the effect is not significant.

Summary: Mean disease index values were significantly different among treatments (P<0.01), with all treatments exhibiting significantly lower levels of root infection than the non-treated control plot. The lowest disease ratings were observed in treatments 1, 2, and 3, with an index ranging between 16.1% and 31.2%. The percent of plants lost during the season was significantly different among treatments (P<0.0001); the non-treated control had significantly greater losses than other plots, with a mean loss of 71.8%. Treatments with the lowest levels of loss included 1, 2, 3, and 6, with values between 16.1% and 29.5%. Despite having overall low yield values, there were significant differences among treatments (P<0.05). Treatment 1 provided the greatest mean yield, 13.9 t/A; treatments 2 and 5 performed similarly. The lowest mean yield was obtained in non-treated plots, which did not differ from treatments 6 or 7. The range of mean yields for these treatments was 1.7-7.2 t/A. There were no differences in percent sugar or RWST values among the tested treatments (P<0.05). To prevent residual foliar fungicide effect on Rhizoctonia infection, no foliar leaf spot management was conducted; this, combined with the severe Rhizoctonia root rot, may account for the low yield parameters observed in this trial. Taking this into consideration, program 1 performed overall better than the other programs in this study.

^b Disease index was calculated by multiplying the disease incidence (0-100%) by the mean symptomatic root severity (1-7) and dividing by 7.

Xanthion In-Furrow Fungicide M & K Farms, Quanicassee - 2018

Trial Quality: Excellent Soil Info: Loam Rhiz Control: Low/moderate pressure:

Variety: C-G333NT Fertilizer: 2x2: 15 gal 28%, 5 gal 10-

Planted: April 29 34-0, 3 gal Thiosul + Cerc Control: Good control: See

Harv/Samp: Oct 19 / Oct 10 Mn&B; S.D. 40 gal 28% comments for materials.

Plot Size: 6 reps Prev Crop: Corn

Row Spacing: 28 inch Weather: Dry until mid July, then Other Pests: N/A

Seeding Rate: 55,000 good weather

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP	100 Ft.	ation of Row	Dead Beets
							10 Day	33 Day	1200 Ft
Quadris	\$1,720	9820	249	39.4	16.8	95.3	21	227	17
Check	\$1,694	9674	249	38.8	16.7	95.4	33	239	94
Xanthion	\$1,665	9508	249	38.2	16.7	95.3	31	230	115
1.00.50/				0.0					0.5
LSD 5%		ns	ns	8.0	ns	ns	ns	ns	35
CV %	_	2	2	1.5	0.8	0.3	36	6	36

Comments: This trial was done to compare Xanthion In-Furrow Fungicide (BASF) to Quadris for control of Rhizoctonia. Xanthion is a 2 component fungicide made up of a biological fungicide and pyraclostrobin (active ingredient in Headline). Both Xanthion and Quadris were applied T-band in-furrow. Both products went through a Dosatron injection system to mix with water. Xanthion was applied at 10.8 oz./acre (1.8 oz. of part A, 9 oz. of part B) and Quadris was applied at 7.5 oz./acre. The Check treatment did not receive any in-furrow fungicide. No treatments in this trial received any foliar Quadris. In this trial, the best indicator of a fungicide's performance against Rhizoctonia is the dead beet counts. The dead beet counts were statistically better for Quadris than the Xanthion or Check treatments at the 95% confidence level. This led to an improvement in tonnage for Quadris over Xanthion. Leafspot materials were as follows: 6/26 Inspire XT + EBDC; 7/11 Super Tin + EBDC; 7/24 Topguard + EBDC; 8/13 Super Tin + EBDC; 8/23 Delaro + EBDC; 9/19 Badge SC.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment, an average RWST of 238, and the early delivery premium. **Bold:** Results are not statistically different from top ranking treatment in each column.

Harv/Samp:

Xanthion In-Furrow Fungicide Spartan Acres Farms, Freeland - 2018

Trial Quality: Excellent Soil Info: Loam Rhiz Control: Very low pressure: See

Fertilizer: PPI: 70#N by 28%; 2x2 30#-B-149 Variety:

treatments

10#-0#-12#S-2#B Planted: April 30 Cerc Control: Good control: See

comments for materials.

Plot Size: Prev Crop: Wheat / Clover 4 reps

Sept 18 / Sept 4

Row Spacing: 20 inch Weather: Dry until mid July, then Other Pests: N/A

good weather Seeding Rate: 62,000

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP	100 Ft.	lation of Row	Dead Beets
							13 Day	36 Day	1200 Ft
Quadris	\$1,574	6591	187	35.2	13.8	93.5	148	170	5
Xanthion	\$1,531	6412	187	34.3	13.7	93.9	154	179	10
Check	\$1,511	6330	187	33.8	13.7	93.6	139	169	8
1.00.50/				4.4					
LSD 5%	_	ns	ns	1.1	ns	ns	ns	ns	ns
CV %	_	2	2	1.8	1.4	0.4	5.6	3.8	85

Comments: This trial was done to compare Xanthion In-Furrow Fungicide (BASF) to Quadris for control of Rhizoctonia. Xanthion is a 2 component fungicide made up of a biological fungicide and pyraclostrobin (active ingredient in Headline). Both Xanthion and Quadris were applied T-band in-furrow. Both products went through a Dosatron injection system to mix with water. Xanthion was applied at 10.8 oz./acre (1.8 oz. of part A, 9 oz. of part B) and Quadris was applied at 8 oz./acre. The Check treatment did not receive any in-furrow fungicide. No treatments in this trial received any foliar Quadris. In this trial, the best indicator of a fungicide's performance against Rhizoctonia is the dead beet counts. The disease level in this trial was very low and there is no statistical difference in dead beet counts in this trial. Even though disease levels were low, Quadris did show a tonnage improvement over the untreated check. Leafspot materials were as follows: 1. EBDC, 2. Inspire + EBDC, 3. Priaxor + EBDC, 4. Super Tin, 5. Proline + EBDC.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment, an average RWST of 238, and the early delivery premium. Bold: Results are not statistically different from top ranking treatment in each column.

Propulse Fungicide In-Furrow Meylan Farms, Auburn - 2018

Trial Quality: Excellent Soil Info: Loam Rhizoc Control: Low pressure: See

Variety: C-G333NT Fertilizer: PPI: 90# N; 2x2: treatments

Planted: April 29 38#-27#-3S + Mn, B Cerc Control: Good control: See

Harv/Samp: Oct 29 / Oct 17 comments for materials

Plot Size: 5 reps Prev Crop: Wheat / Clover

Row Spacing: 22 inch Weather: Dry until mid July, Other Pests: Sugarbeet Cyst Nematode

Seeding Rate: 68,000 then good weather

Treetment	RWSA	RWST	T/A	% Sugar	r % CJP	_	lation of Row	Dead Boots /	_	matodes - c of Soil
Treatment	RWSA	KWSI	I/A	% Sugar % CJ		14 Day	30 Day	Beets / 1200 Ft	Cysts	Eggs + Juv's
Check	7899	263	30.1	17.5	96.4	211	235	37	10	472
Quadris	7681	257	29.9	17.2	96.1	207	235	8	16	940
Propulse	7670	257	29.8	17.3	95.9	165	222	21	3	440
LSD 5%	ns	ns	ns	ns	ns	22	ns	14	10	ns
CV %	2	2	1.7	1.6	0.3	7	5	44	69	95

Comments: This trial was done to evaluate an in-furrow application of Propulse fungicide (Bayer CropScience) for effectiveness on Rhizoctonia and sugarbeet cyst nematode. Propulse fungicide is the combination of prothioconazole (active ingredient in Proline) and fluopyram. Bayer representatives believe that fluopyram may help in control of sugarbeet cyst nematode. Propulse (13.6 oz/acre) plus Fastac insecticide (4 oz/acre) was compared to Quadris (8.5 oz/acre) plus Fastac. The Check treatment did not have any in-furrow fungicide or insecticide. The Propulse and Quadris treatments were applied in a 3" T-band with 7.5 gallons of water. The entire trial received foliar Quadris (14 oz/acre) at 6-8 leaf. The foliar Quadris likely held disease pressure down across the trial, but both the Quadris and Propulse treatments were statistically better than the Check for Rhizoctonia dead beet control. Sugarbeet cyst nematode (SBCN) samples were taken in the fall in 100 foot of row in each of the replications. SBCN sampling is always variable by nature of the pest, however the Propulse treatment had a statistically lower cyst count than the Quadris treatment. The results were not statistically significant for eggs and juvenile counts. The data is somewhat confusing in that the results for eggs and juveniles are very close between the Propulse and Check treatments since the Check probably should have been closer to the Quadris results for nematode counts. Any potential nematode help from Propulse did not result in a yield or sugar improvement. The leafspot program was as follows: 6/29 Inspire + EBDC, 7/18 Super Tin + Badge, 7/31 Enable + EBDC, 8/15 Super Tin + Badge, 9/7 Delaro + Proline, 9/22 Badge.

Propulse Fungicide In-Furrow LAKKE Ewald Farms, Unionville - 2018

Trial Quality: Good Soil Info: Loam Rhizoc Control: Very low pressure: See

Variety: SX-1245N RR Fertilizer: 2x2: 14.6 gal 28%, 3 gal treatments.

Planted: April 26 Thiosul, pt of B, qt of Mn; Cerc Control: Good control: See

Harv/Samp: Oct 17 / Oct 10

Broadcast 73#N

comments for materials

Plot Size: 4 reps Prev Crop: Wheat / Clover

Row Spacing: 20 inch Weather: Dry until mid July, then Other Pests: Pin nematode

Seeding Rate: 62,600 good weather

Treatment	RWSA	RWST	T/A	% Sugar	% CJP	_	lation of Row	Dead Beets /		matodes - c of Soil
Treatment	RWSA	KWSI	I/A	% Sugar	% CJP	12 Day	35 Day	1200 Ft	Cysts	Eggs + Juv's
Quadris	9076	251	36.2	16.8	95.6	51	141	7	0	16
Check	8812	245	36.0	16.5	95.2	105	144	23	1	15
Propulse	8806	248	35.6	16.6	95.5	44	134	8	0	1
LSD 5%	ns	ns	ns	ns	ns	21	ns	ns	ns	ns
CV %	6	4	3.1	3.6	0.2	18	11	73	149	173

Comments: This trial was done to evaluate an in-furrow application of Propulse fungicide (Bayer CropScience) for effectiveness on Rhizoctonia and sugarbeet cyst nematode. Propulse fungicide is the combination of prothioconazole (active ingredient in Proline) and fluopyram. Bayer representatives believe that fluopyram may help in control of sugarbeet cyst nematode. Propulse (13.6 oz/acre) plus Mustang Max insecticide (3.5 oz/acre) was compared to Quadris (8.5 oz/acre) plus Mustang Max. The Check treatment did not have any in-furrow fungicide or insecticide. The Propulse and Quadris treatments were applied in a 3" T-band with 5.5 gallons of water. None of the trial received any foliar Quadris. Even with no foliar Quadris, disease pressure in this trial was very low with the untreated check only having an average Rhizoctonia dead beet count of 23. Both the Quadris and Propulse treatments are statistically better than the Check for dead beet counts at the 90% confidence level. Sugarbeet cyst nematode (SBCN) samples were taken in the fall in 100 foot of row in each of the replications. This field was known to have SBCN from a previous trial but sampling this fall did not show much of a SBCN population. The MSU Diagnostic Lab did find Pin nematode with average counts of 214 for Quadris, 195 for Check and 108 for Propulse. The Propulse is statistically better than both the Check and Quadris for Pin nematode at 95% confidence. Any potential nematode help from Propulse did not result in a yield or sugar improvement. The leafspot program was as follows: 6/28 Proline + EBDC, 7/25 Super Tin + Badge, 8/12 Inspire XT + Gem + Max-In Boron, 9/1 EBDC + Badge, 9/7 Proline + Badge, 9/28 Badge. All applications included Masterlock.

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Average of 2 locations - 2018 (Page 1 of 12)

Soil and Other Info: See individual trials Trial Quality: Good

Rhizoc Level: Low Cerc. Control: See trts. Problems: None

C-G515 and C-G333NT Plots: 6 rows X 38 ft, 6 reps Row Spacing: 22 inches

Varieties: HM-9879NT, B-1399,

Seeding Rate: 4.1 inches

Beets/100 ft: ~220

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

7.15	Application: 3D 3320 tractor mounted pic				6		00 pt	31, 20 g	ou I						
No.	Treatment	Variety	# Applic	Leaf: Dam	spot	Net \$	/A	RWS	SA	RW	/ST	T/	Ά	% SL	
10	1st and 15th	B-1399	6	0.3	i	\$1,372	ab	8561	а	237	def	36.3	ab	16.1	d-g
9	More Aggressive	B-1399	5	1.2	hi	\$1,360	ab	8449	а	233	d-g	36.7	ab	15.8	e-i
7	Rec. DSV	B-1399	5	2.2	f-i	\$1,324	a-d	8184	ab	233	d-g	35.3	abc	15.8	e-i
8	Less Aggressive	B-1399	4	3.7	fgh	\$1,253	c-f	7757	bc	224	hi	34.6	bcd	15.3	ij
11	3 Spray	B-1399	3	5.2	f	\$1,241	def	7493	С	226	ghi	33.3	d	15.4	hij
12	Untreated Check	B-1399	0	53.4	b	\$1,026	ij	5905	f	203	k	29.5	efg	14.0	kl
22	1 at and 1 Eth	C CaaaN	6	2.0	ah:	\$1,370	o b	8552	_	239	dof	36.1	aha	16.3	ada
21	1st and 15th	C-G333N C-G333N	6 5		ghi		ab		а	239	def	36.9	abc	15.9	cde d-h
20	More Aggressive	C-G333N	5	2.3	f-i f-i	\$1,390 \$1,351	a	8600 8436	а	233	d-g	36.1	a abc	15.9	f-i
19	Less Aggressive Rec. DSV	C-G333N	5	2.7	f-i	\$1,351	ab ab	8387	a	232	d-g e-h	36.3	abc	15.7	f-i
23	5 Spray	C-G333N	5	10.5	e		abc	8309	a	232	e-h	36.1	abc	15.7	f-i
24	Untreated Check	C-G333N	0	69.3	a	\$1,021	ii	5885	f	197	k	30.0	е	13.7	1-1
24	Officeated Check	C-0333N	U	09.5	а	Ψ1,021	ij	3003		131	N	30.0	C	13.1	'
15	More Aggressive	C-G515	5	1.4	ghi	\$1,358	ab	8415	а	238	def	35.5	abc	16.1	d-g
16	1st and 15th	C-G515	6	2.1	f-i	\$1,345	abc	8407	а	237	def	35.7	abc	16.1	def
13	Rec. DSV	C-G515	5	2.4	f-i	\$1,343	abc	8310	а	241	bcd	34.7	bcd	16.3	cde
14	Less Aggressive	C-G515	5	4.6	fg	\$1,288	b-e	8077	ab	234	d-g	34.3	cd	15.8	e-i
17	4 Spray	C-G515	4	19.6	d	\$1,220	efg	7540	С	230	fgh	32.9	d	15.6	g-j
18	Untreated Check	C-G515	0	68.7	а	\$1,022	ij	5891	f	210	j	28.3	efg	14.5	kl
4	1st and 15th	HIL-9879NT	6	0.9	hi	\$1,138	gh	7213	cd	248	ab	29.3	efg	16.8	ab
3	More Aggressive	HIL-9879NT	5	0.9	hi	\$1,176	fg	7376	С	250	а	29.8	ef	16.9	а
1	Rec. DSV	HIL-9879NT	4	1.8	ghi	\$1,180	fg	7317	cd	249	ab	29.8	ef	16.7	abc
5	2 Spray	HIL-9879NT	2	1.8	ghi	\$1,135	gh	6835	de	247	abc	27.9	fg	16.6	abc
2	Less Aggressive	HIL-9879NT	3	3.1	f-i	\$1,072	hi	6617	е	240	cde	27.8	g	16.3	bcd
6	Untreated Check	HIL-9879NT	0	36.7	С	\$956	j	5518	f	222	i	25.2	h	15.1	j
=															
	rerage				.47	\$1,23		7584		23		32.		15.	
	SD 5%			2.0		84.8		492			.2	1.6		0.4	
C/	/ %			15	5.2	4.9		4.6	5	2	.2	3.	6	2.	0

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Average of 2 locations - 2018 (Page 2 of 2)

Application Timing Effect (averaged over varieties)

No.	Treatment	Net \$//	Δ.	% Leaf	•	RWS	A	RWS	т	T/A	\	% SI	JC	% CJ	ΙP
3	More Aggressive	\$1,321	а	1.5	d	8210	а	239	а	34.7	а	16.2	ab	95.8	а
4	1st and 15th	\$1,306	а	1.3	d	8183	а	240	а	34.4	ab	16.3	ab	95.8	а
1	Rec. DSV	\$1,302	а	2.3	d	8050	а	239	а	34.0	b	16.1	b	95.9	а
2	Less Aggressive	\$1,241	b	3.5	С	7722	b	233	b	33.2	С	15.8	С	95.7	а
5	2 Spray	\$1,234	b	9.3	b	7544	b	234	b	32.5	С	15.8	С	95.9	а
6	Untrreated Check	\$1,006	С	57.0	а	5800	С	208	С	28.3	d	14.3	d	95.5	b
Ave	erage	\$1,235.	.1	12.4	12.47		8	232.)	32.8	5	15.7	7 5	95.7	6
LSI	O 5%	34.6		1.09	1.09		2	2.9	·	0.68	8	0.1	8	0.18	3
CV	%	4.9		15.2		4.6		2.2		3.6	;	2.0)	0.3	

Variety Effect (averaged over fungicide treatments)

No.	Treatment	Net \$/	A	% Leaf Dama	-	RWS	A	RWS	т	T/A		% SU	IC	% CJP
4	C-G333N	\$1,305	а	14.9	b	8028	а	228	С	35.2	а	15.49	С	95.7
2	B-1399	\$1,263	b	11.0	С	7725	b	226	С	34.3	b	15.4	С	95.7
3	C-G515	\$1,263	b	16.5	а	7774	b	232	b	33.6	С	15.72	b	95.8
1	HIL-9879NT	\$1,110	С	7.5	d	6813	С	243	а	28.3	d	16.4	а	95.8
Ave	erage	\$1,235	.1	12.4	.7	7584.	8	232.	0	32.8	5	15.7	5	95.76
LSI	D 5%	16.5		1.10	1.10			2.1		0.36	6	0.14	ŀ	0.18
CV	%	2.5		16.	16.5			1.7		2.1		1.7		0.3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Fungicide application timing treatments were evaluated for control of Cercospora (*Cercospora beticola*) and Alternaria (*Alternaria alternata*) leafspot at 2 locations (Elkton and Richville, MI) in 2018. Four varieties were utilized: HIL-9879NT (very tolerant), B-1399 (tolerant), C-G515 (fairly tolerant to Cercospora, susceptible to Alternaria) and C-G333N (susceptible to Cercospora, mid-level tolerance to Alternaria). Fungicide application timing treatments were: Aggressive, Recommended, Less Aggressive, 1st and 15th and 2, 3, 4 or 5 applications depending upon varietal tolerance. When averaged over both locations, HIL-9879NT clearly provided the best control of leafspot followed by B-1399, C-G333NT and C-G515 which was badly infected with Alternaria leafspot. With respect to application timing, the 1st and 15th and More aggressive treatments provided very good leafspot control. The Recommended Treatment also gave good leafspot control, followed by the Less Aggressive and 2, 3, 4 or 5 treatments. The leafspot pressure was very high. Untreated Check plots lost about 6 tons/acre and 2 points of sugar due to the leafspot infection.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off. **Bold:** Results are not statistically different from top-ranking treatment in each column.

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Auernhamer, Richville, MI - 2018 (Page 3 of 12)

Trial Quality: Good

Varieties: HIL-9879NT,B-1399

C-G515,C-G333N

Planted: April 30

Harvested: Sept 28

Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Clay Loam % OM: 3.4 pH: 7.6 CEC: 17.1

P: above opt **K:** above opt

Mn: high B: med Added N: 135 lbs. Previous Crop: Corn Rhizoc Level: Low Cerc. Control: See trts. Problems: None

Seeding Rate: 4.1 inches Rainfall: 21.3 inches

Beets/100 ft: ~262

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No .	Treatment 1st and 15th	Variety B-1399	# Applic	24-S	ige ep	% Leafs Dama 5-Se	pot age ep	Net \$	6/A	RWS		RW 228	/ST	T/ 42.8		% S U	IC
			6	0.4	f	0.1	е				ab				ab		Ŭ
9	More Aggressive	B-1399	5	0.6	f	0.2	е	\$1,575	bc	9368	bc	218	ef	42.9	ab	14.9	fg
7 11	Rec. DSV	B-1399 B-1399	5	3.0 5.3	ef ef	0.9 1.9	e	\$1,632 \$1,498			ab cde	226 221	b-f def	42.7 39.2	ab de	15.3	Ŭ
8	3 spray Less Aggressive	B-1399	4	5.3	ef	1.9	e	\$1,530				216	f	41.7		15.2 14.8	
12	Untreated Check	B-1399 B-1399	0	79.1	b	44.0	b b	\$1,293	fg	7218	hi	193	hi	37.4		13.4	g ii
12	Unitreated Check	D-1399	U	79.1	D	44.0	D	φ1,293	ıg	1210	TII	193	TII	37.4	eig	13.4	IJ
21	More Aggressive	C-G333N	5	1.2	f	0.3	е	\$1,714	а	10143	а	234	ab	43.2	а	15.9	ab
23	5 spray	C-G333N	5	3.0	ef	0.9	е	\$1,646	ab	9757	ab	226	b-f	43.2	а	15.3	b-g
19	Rec. DSV	C-G333N	5	3.0	ef	0.9	е	\$1,654	ab	9771	ab	225	b-f	43.5	а	15.2	c-g
22	1st and 15th	C-G333N	6	3.6	ef	1.2	е	\$1,618	abc	9655	ab	226	b-f	42.6	ab	15.5	a-f
20	Less Aggressive	C-G333N	5	5.3	ef	1.9	е	\$1,610	abc	9658	ab	229	а-е	41.8	abc	15.4	a-g
24	Untreated Check	C-G333N	0	100.0	а	65.6	а	\$1,234	gh	6893	ij	191	i	36.0	fgh	13.3	j
15	More Aggressive	C-G515	5	1.2	f	0.4	е	\$1,654	ab	9808	ab	234	ab	42.0	abc	15.9	a-d
16	1st and 15th	C-G515	6	3.0	ef	0.9	е	\$1,589			ab	226	b-f	42.1			
13	Rec. DSV	C-G515	5	4.4	ef	1.7	e	\$1,584			abc		a-d	40.5			
14	Less Aggressive	C-G515	5	8.8	е	4.2	е	\$1,561	bc	9414	ab	234	ab	39.7	cde	15.8	а-е
17	4 Spray	C-G515	4	22.3	d	10.0	d	\$1,426	def	8439	def	222	c-f	38.0	ef	15.1	efg
18	Untreated Check	C-G515	0	100.0	а	62.5	а	\$1,231	gh	6875	ij	201	gh	34.1	hi	14.0	hi
		0070NT				0 =		Φ4.000		0077	,	000		05.0		40.4	\equiv
3	More Aggressive	HIL-9879NT	5	2.2	ef	0.7	е	\$1,398	ef	8377	ef	238	a	35.2	gh	16.1	a
4	1st and 15th	HIL-9879NT	6	2.4	ef	0.7	е	\$1,341	fg	8110	efg	236	ab	34.4	hi :	16.0	
5	2 spray	HIL-9879NT	2	3.7	ef	1.4	е	\$1,322		7653	gh	234	ab	32.7	j h:	15.9	
1	Rec. DSV	HIL-9879NT	4	4.8	ef	1.9	е	\$1,363	fg	8092	efg	233		34.7	hi h:	15.8	
2	Less Aggressive	HIL-9879NT	3	5.9	ef	3.1	е	\$1,318		7787	fgh	231	a-d	33.7	hi :	15.7	
6	Untreated Check	HIL-9879NT	0	70.6	С	28.3	С	\$1,118	h	6244	J	207	g	30.2	J	14.1	h
A۱	/erage			18.2	8	9.8	1	\$1,48	0.9	872	1.5	22	3.4	38.	93	15.	21
LS	SD 5%			5.78	3	4.7	5	116.	.9	644	.8	9	.5	2.	18	0.5	58
C\	/ %			22.4	4	34.	3	5.6	5	5.2	2	3	.0	4.	0	2.	7

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Auernhamer, Richville, MI - 2018 (Page 4 of 12)

Application Timing Effect (averaged over varieties)

No.	Treatment	Net \$/A	% Lea	afsp	ot Dan	nage	RWS	٠.۸	RW	ет	T/#	١	% SL	ıC
NO.	Heatinent	Net #/A	24-S	ер	5-S	ер	IXVV)A	17.44	3 I	1//	`	/8 JC	
3	More Aggressive	\$1,586 a	1.3	d	0.4	d	9424	а	231	а	40.8	а	15.7	а
1	Rec. DSV	\$1,558 ab	3.8	cd	1.3	bcd	9223	ab	229	ab	40.3	а	15.5	ab
4	1st and 15th	\$1,545 ab	2.3	d	0.7	cd	9249	ab	229	ab	40.5	а	15.6	ab
2	Less Aggressive	\$1,505 bc	6.3	bc	2.8	bc	8991	b	227	ab	39.2	b	15.4	b
5	2 Spray	\$1,473 c	8.5	b	3.5	b	8634	С	226	b	38.3	b	15.4	b
6	Untreated Check	\$1,219 d	87.4	а	50.1	а	6808	d	198	С	34.4	С	13.7	С
_														_
Ave	erage	\$1,480.9	1,480.9 18.28		9.8	31	8721	.5	223	3.4	38.9	93	15.2	<u>'</u> 1
LSI	O 5%	58.46	2.8	9	2.3	38	322	.4	4.7	7	1.0	9	0.29	9
CV	%	5.6	22.	4	34	.2	5.2	2	3.0	0	4.0)	2.7	,

Variety Effect (averaged over fungicide treatments)

No.	Treatment	Net \$/A	% Leafsp	ot Damage	RWSA	RWST	T/A	% SUC
NO.	i realineill	Net VA	24-Sep	5-Sep	KWSA	KWSI	1//	/8 30C
4	C-G333N	\$1,579 a	19.3 b	11.8 a	9313 a	222 b	41.7 a	15.1 b
2	B-1399	\$1,527 b	15.6 с	8.2 b	8961 b	217 c	41.1 b	14.8 c
3	C-G515	\$1,508 b	23.3 a	13.3 a	8902 b	225 b	39.4 с	15.3 b
1	HIL-9879NT	\$1,310 c	14.9 c	6.0 b	7711 c	230 a	33.5 d	15.6 a
Ave	erage	\$1,480.9	18.28	9.81	8721.5	223.4	38.93	15.21
LSI	O 5%	36.6	3.29	2.52	204.8	3.6	0.42	0.25
CV	%	3.8	27.5	39.3	3.6	2.5	1.6	2.5

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Fungicide application timing treatments were evaluated for control of Cercospora (*Cercospora beticola*) and Alternaria (*Alternaria alternata*) leafspot near Richville, MI in 2018. Four varieties were utilized: HIL-9879NT (very tolerant), B-1399 (tolerant), C-G515 (fairly tolerant to Cercospora, susceptible to Alternaria) and C-G333N (susceptible to Cercospora, mid-level tolerance to Alternaria). Fungicide application timing treatments were: Aggressive Recommended, Less Aggressive, 1st and 15th and 2, 3, 4 or 5 applications depending upon varietal tolerance. HIL-9879NT clearly provided the best control of leafspot followed by B-1399, C-G515 and C-G333NT. With respect to application, the 1st and 15th treatment gave the best leafspot control followed by Recommended, More Aggressive and the 2, 3, 4 or 5 treatments. The leafspot pressure was very high. Untreated Check plots lost over 5 tons/acre and 2 points of sugar due to leafspot infection.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Auernhamer, Richville, MI - 2018 (Page 5 of 12)

No.	Program	Treatment	Арр	DSV	Date
1	Rec DSV.	Inspire + Manzate + Masterlock	1	52	2-Jul
	HIL-9879NT	Super Tin + Manzate + MasterLock	2	112	6-Aug
		Proline + Preference + Manzate + MasterLock	3	154	24-Aug
		Manzate + MasterLock	4	197	12-Sep
2	Less Aggressive	Inspire + Manzate + Masterlock	1	60	9-Jul
	HIL-9879NT	Super Tin + Manzate + MasterLock	2	123	10-Aug
		Proline + Preference + Manzate + MasterLock	3	188	6-Sep
3	More Aggressive	Inspire + Manzate + Masterlock	1	52	2-Jul
	HIL-9879NT	Super Tin + Manzate + MasterLock	2	74	20-Jul
		Proline + Preference + Manzate + MasterLock	3	112	6-Aug
		Super Tin + Manzate + MasterLock	4	154	24-Aug
		Manzate + MasterLock	5	188	6-Sep
4	1st and 15th	Proline + Manzate + MasterLock	1	54	3-Jul
	HIL-9879NT	Super Tin + Manzate + MasterLock	2	70	16-Jul
		Manzate + MasterLock	3	100	1-Aug
		Inspire + Manzate + Masterlock	4	133	15-Aug
		Super Tin + Manzate + MasterLock	5	172	31-Aug
		Manzate + MasterLock	6	197	12-Sep
5	2 Spray	Proline + Manzate + MasterLock	1	70	16-Jul
	HIL-9879NT	Super Tin + Manzate + MasterLock	2	133	15-Aug
6	UTC - HIL-9879NT				
7	Rec DSV.	Inspire + Manzate + MasterLock	1	52	2-Jul
	B-1399	Super Tin + Manzate + MasterLock	2	94	27-Jul
		Proline + Preference + Manzate + MasterLock	3	131	14-Aug
		Manzate + MasterLock	4	172	31-Aug
		Manzate + MasterLock	5	189	7-Sep
8	Less Aggressive	Inspire + Manzate + MasterLock	1	54	3-Jul
	B-1399	Super Tin + Manzate + MasterLock	2	112	6-Aug
		Proline + Preference + Manzate + MasterLock	3	154	24-Aug
		Manzate + MasterLock	4	197	12-Sep
9	More Aggressive	Inspire + Manzate + MasterLock	1	52	2-Jul
	B-1399	Super Tin + Manzate + MasterLock	2	74	20-Jul
		Proline + Preference + Manzate + MasterLock	3	112	6-Aug
		Super Tin + Manzate + MasterLock	4	154	24-Aug
		Manzate + MasterLock	5	188	6-Sep
10	1st and 15th	Proline + Manzate + MasterLock	1	52	2-Jul
	B-1399	Super Tin + Manzate + MasterLock	2	70	16-Jul
		Manzate + MasterLock	3	100	1-Aug
		Inspire + Manzate + MasterLock	4	133	15-Aug
		Super Tin + Manzate + MasterLock	5	172	31-Aug
		Manzate + MasterLock		197	12-Sep

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Auernhamer, Richville, MI - 2018 (Page 6 of 12)

No.	Program	Treatment	Арр	DSV	Date
11	3 Spray	Proline + Manzate + MasterLock	1	60	9-Jul
	B-1399	Super Tin + Manzate + MasterLock	2	123	9-Aug
		Manzate + MasterLock	3	195	11-Sep
12	UTC - B-1399				
13	Rec. DSV	Inspire + Manzate + MasterLock	1	49	29-Jun
	C-G515	Super Tin + Manzate + MasterLock	2	91	25-Jul
		Proline + Preference + Manzate + MasterLock	3	121	9-Aug
		Manzate + MasterLock	4	153	23-Aug
		Manzate + MasterLock	5	195	11-Sep
14	Less Aggressive	Inspire + Manzate + MasterLock	1	49	29-Jun
	C-G515	Super Tin + Manzate + MasterLock	2	70	16-Jul
		Proline + Preference + Manzate + MasterLock	3	97	30-Jul
		Super Tin + Manzate + MasterLock	4	133	15-Aug
		Manzate + MasterLock	5	170	31-Aug
15	More Aggressive	Inspire + Manzate + MasterLock	1	41	25-Jun
	C-G515	Super Tin + Manzate + MasterLock	2	62	11-Jul
		Proline + Preference + Manzate + MasterLock	3	91	25-Jul
		Super Tin + Manzate + MasterLock	4	123	9-Aug
		Manzate + MasterLock	5	153	23-Aug
16	1st and 15th	Proline + Manzate + MasterLock	1	52	2-Jul
	C-G515	Super Tin + Manzate + MasterLock	2	70	16-Jul
		Manzate + MasterLock	3	100	1-Aug
		Inspire + Manzate + MasterLock	4	133	15-Aug
		Super Tin + Manzate + MasterLock	5	170	31-Aug
		Manzate + MasterLock	6	197	12-Sep
17	4 Spray	Proline + Manzate + MasterLock	1	58	5-Jul
	C-G515	Super Tin + Manzate + MasterLock	2	91	25-Jul
		Manzate + MasterLock	3	148	20-Aug
		Inspire + Manzate + MasterLock	4	183	4-Sep
18	UTC - C-G515				
19	Rec. DSV	Inspire + Manzate + MasterLock	1	41	21-Jun
	C-G333N	Super Tin + Manzate + MasterLock	2	85	20-Jul
		Proline + Preference + Manzate + MasterLock	3	116	3-Aug
		Manzate + MasterLock	4	148	20-Aug
		Manzate + MasterLock	5	183	6-Sep
20	Less Aggressive	Inspire + Manzate + MasterLock	1	49	29-Jun
	C-G333N	Super Tin + Manzate + MasterLock	2	70	16-Jul
		Proline + Preference + Manzate + MasterLock	3	97	30-Jul
		Super Tin + Manzate + MasterLock	4	133	15-Aug
		Manzate + MasterLock	5	170	31-Aug

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Auernhamer, Richville, MI - 2018 (Page 7 of 12)

No.	Program	Treatment	Арр	DSV	Date
21	More Aggressive	Inspire + Manzate + MasterLock	1	41	25-Jun
	C-G333N	Super Tin + Manzate + MasterLock	2	62	11-Jul
		Proline + Preference + Manzate + MasterLock	3	91	25-Jul
		Super Tin + Manzate + MasterLock	4	123	9-Aug
		Manzate + MasterLock	5	165	23-Aug
22	1st and 15th	Proline + Manzate + MasterLock	1	52	2-Jul
	C-G333N	Super Tin + Manzate + MasterLock	2	70	16-Jul
		Manzate + MasterLock	3	100	1-Aug
		Inspire + Manzate + MasterLock	4	133	15-Aug
		Super Tin + Manzate + MasterLock	5	170	31-Aug
		Manzate + MasterLock	6	197	12-Sep
23	5 Spray	Proline + Manzate + MasterLock	1	52	2-Jul
	C-G333N	Super Tin + Manzate + MasterLock	2	74	20-Jul
		Manzate + MasterLock	3	108	6-Aug
		Inspire + Manzate + MasterLock	4	143	16-Aug
		Super Tin + Manzate + MasterLock	5	186	6-Sep
24	UTC - C-G333N				

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Laker Agronomy Field, Elkton, MI - 2018 (Page 8 of 12)

Trial Quality: Fair-Good **Varieties:** HIL-9879NT,B-1399

C-G515,C-G333NT Planted: May 2 Harvested: Oct 22

Plots: 6 rows X 38 ft, 6 reps **Row Spacing**: 22 inches

Soil Info: Clay Loam

% OM: 2.6 **pH**: 7.4 **CEC:** 15.1 **P:** above opt **K:** above opt

Mn: high B: med Added N: 135 lbs

Previous Crop: Soybeans

Rhizoc Level: Low Cerc. Control: See trts.

Problems: None

Seeding Rate: 4.1 inches Rainfall: 22.3 inches Beets/100 ft: ~177

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

				%		%											
No.	Treatment	Variety	# Applic	Leafs Dama		Leafs Dama		Net \$	6/A	RW	SA	RW	/ST	T/	Α	% SU	
			Applic	18-S		28-A										30	
10	1st and 15th	B-1399	6	0.1	е	0.5	С	\$1,125	a-d	7465	a-d	248	d-h	30.1	ab	16.8	cd
9	More Aggressive	B-1399	5	1.8	е	1.3	С	\$1,131	a-d	7448	a-d	247	d-h	30.1	ab	16.6	c-f
7	Rec. DSV	B-1399	5	3.4	е	1.2	С	\$1,076	а-е	7076	b-e	241	f-i	29.3	ab	16.3	d-g
8	Less Aggressive	B-1399	4	7.4	de	2.9	С	\$1,016	c-f	6652	def	236	hij	28.1	bcd	16.1	fgh
11	3 Spray	B-1399	3	13.9	d	3.6	С	\$1,026	b-f	6549	ef	228	jk	28.7	abc	15.6	hi
12	Untreated Check	B-1399	0	80.0	b	12.9	b	\$829	i	5006	g	211	lm	23.9	е	14.5	j
22	1st and 15th	C-G333N	6	1.6	е	1.0	С	\$1,214	а	8002	а	252	c-f	31.7	а	17.0	С
20	Less Aggressive	C-G333N	5	2.3	е	0.2	С	\$1,159	abc	7613	abc	244	e-i	31.0	ab	16.4	d-g
19	Rec. DSV	C-G333N	5	5.7	е	0.3	С	\$1,094	а-е	7186	а-е	239	g-j	30.0	ab	16.2	d-g
21	More Aggressive	C-G333N	5	7.0	de	0.9	С	\$1,069	b-e	7071	b-e	233	ij	30.4	ab	15.8	gh
23	5 Spray	C-G333N	5	41.7	С	0.5	С	\$1,068	b-e	7057	b-e	234	ij	30.2	ab	15.9	gh
24	Untreated Check	C-G333N	0	95.0	а	19.4	а	\$852	hi	5144	g	201	m	25.6	de	14.0	k
13	Rec. DSV	C-G515	5	3.2	е	0.5	С	\$1,102	а-е	7238	а-е	248	d-h	29.2	ab	16.7	cde
15	More Aggressive	C-G515	5	3.5	е	1.0	С	\$1,093	а-е	7215	а-е	243	e-i	29.7	ab	16.4	d-g
16	1st and 15th	C-G515	6	3.9	е	0.8	С	\$1,161	ab	7681	ab	249	d-g	30.9	ab	16.8	cde
14	Less Aggressive	C-G515	5	4.5	е	0.6	С	\$1,069	b-e	7074	b-e	238	g-j	29.7	ab	16.1	e-h
17	4 Spray	C-G515	4	41.7	С	2.5	С	\$1,034	b-f	6760	c-f	237	g-j	28.5	abc	16.0	fgh
18	Untreated Check	C-G515	0	95.0	а	17.3	а	\$878	ghi	5302	g	219	kl	24.1	е	15.1	ij
4	1st and 15th	HIL-9879NT	6	0.1	е	0.3	С	\$1,025	b-f	6861	b-f	263	abc	26.0	cde	17.7	ab
1	Rec. DSV	HIL-9879NT	4	0.2	е	0.2	С	\$1,032	b-f	6752	c-f	268	а	25.2	е	17.9	а
3	More Aggressive	HIL-9879NT	5	0.4	е	0.3	С	\$972	e-h	6487	ef	265	ab	24.5	е	17.7	ab
2	Less Aggressive	HIL-9879NT	3	1.7	е	0.8	С	\$925	f-i	6044	f	254	b-e	23.7	е	17.2	bc
5	2 Spray	HIL-9879NT	2	1.8	е	0.5	С	\$1,007	d-g	6371	ef	257	a-d	24.8	е	17.2	bc
6	Untreated Check	HIL-9879NT	0	47.1	С	3.5	С	\$841	hi	5077	g	241	f-i	21.0	f	16.3	d-g
Av	rerage			19.2	29	3.0	4	\$1,03	3.3	6713	3.8	24	1.6	27.	77	16.	34
	D 5%			6.7	_	3.2		118.		717).5	2.6		0.5	
	/ %			30.	_	93.		10.0		9.3		3.		8.		2.	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Laker Agronomy Field, Elkton, MI - 2018 (Page 9 of 12)

Application Timing Effect (averaged over varieties)

No.	Treatment	Net \$/A	١.		pot age	% Leafs Dama 28-A	pot age	RWS	SA	RW	ST	Т//	4	% SI	JC
4	1st and 15th	\$1,131	а	1.5	С	0.7	b	7502	а	253	а	29.7	а	17.1	а
1	Rec. DSV	\$1,076	ab	3.1	С	0.6	b	7063	b	249	ab	28.4	ab	16.8	b
3	More Aggressive	\$1,066	b	3.2	С	0.9	b	7055	b	247	bc	28.7	ab	16.6	bc
2	Less Aggressive	\$1,042	b	4.0	С	1.1	b	6846	bc	243	cd	28.1	b	16.4	cd
5	2 Spray	\$1,034	b	24.8	b	1.8	b	6684	С	239	d	28.1	b	16.2	d
6	Untreated Check	\$850	С	79.3	а	13.3	а	5132	d	218	е	23.6	С	15.0	е
Ave	erage	\$1,033.	\$1,033.3		29	3.0	4	6713	.8	241	.6	27.	77	16.3	34
	D 5%	59.4		3.3	6	1.6	3	358.	6	5.2	2	1.3	2	0.2	7
CV	%	10.0		30.	4	93.	5	9.3		3.8	3	8.3	3	2.9)

Variety Effect (averaged over fungicide treatments)

No.	Treatment	Net \$/A	Damage		% Leafspot Damage 28-Aug		RWSA		RWST		T/A		% SUC	
4	C-G333N	\$1,076 a	25.5	а	3.7	а	7012	а	234	C	29.8	а	15.9	С
3	C-G515	\$1,056 al	25.3	а	3.8	а	6878	ab	239	b	28.7	b	16.2	b
2	B-1399	\$1,034 b	17.8	b	3.7	а	6699	b	235	bc	28.4	b	16.0	bc
1	HIL-9879NT	\$967 c	8.6	С	0.9	b	6265	С	258	а	24.2	С	17.3	а
Ave	erage	\$1,033.3	19.	29	3.0	04	6713	.8	241	.6	27.7	77	16.3	34
LSI	O 5%	31.2	3.2	29	1.3	38	188.	2	4.3	3	0.6	4	0.2	2
CV%		6.0 33.9		.9	90.5		5.6		3.5		4.6		2.6	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Fungicide application timing treatments were evaluated for control of Cercospora (*Cercospora beticola*) and Alternaria (*Alternaria alternata*) leafspot near Elkton, MI in 2018. Four varieties were utilized: HIL-9879NT (very tolerant), B-1399 (tolerant), C-G515 (fairly tolerant to Cercospora, susceptible to Alternaria) and C-G333N (susceptible to Cercospora, mid-level tolerance to Alternaria). Fungicide application timing treatments were: Aggressive, Recommended, Less Aggressive, 1st and 15th and 2, 3, 4 or 5 applications depending upon varietal tolerance. HIL-9879NT clearly provided the best control of leafspot followed by B-1399, C-G515 and C-G333N. With respect to application timing, the 1st and 15th treatment gave the best leafspot control followed by Recommended, More Aggressive, Less Aggressive and the 2, 3, 4 or 5 treatments. The leafspot pressure was very high. Untreated Check plots lost over 5 tons/acre and 2 points of sugar due to the leafspot infection.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Laker Agronomy Field, Elkton, MI - 2018 (Page 10 of 12)

No.	Program	Treatment	Арр	DSV	Date
1	Rec. DSV	Inspire + Manzate + MasterLock	1	63	10-Jul
	HIL-9879NT	Super Tin + Manzate + MasterLock	2	123	7-Aug
		Proline + Preference + Manzate + MasterLock	3	172	28-Aug
		Manzate + MasterLock	4	207	12-Sep
2	Less Aggressive	Inspire + Manzate + MasterLock	1	73	16-Jul
	HIL-9879NT	Super Tin + Manzate + MasterLock	2	135	13-Aug
		Proline + Preference + Manzate + MasterLock	3	197	5-Sep
3	More Aggressive	Inspire + Manzate + MasterLock	1	61	5-Jul
	HIL-9879NT	Super Tin + Manzate + MasterLock	2	87	23-Jul
		Proline + Preference + Manzate + MasterLock	3	123	7-Aug
		Super Tin + Manzate + MasterLock	4	172	28-Aug
		Manzate + MasterLock	5	205	11-Sep
4	1st and 15th	Proline + Manzate + MasterLock	1	56	2-Jul
	HIL-9879NT	Super Tin + Manzate + MasterLock	2	73	16-Jul
		Manzate + MasterLock	3	106	1-Aug
		Inspire + Manzate + MasterLock	4	139	15-Aug
		Super Tin + Manzate + MasterLock	5	180	30-Aug
		Manzate + MasterLock	6	207	12-Sep
5	2 Spray	Proline + Manzate + MasterLock	1	73	16-Jul
	HIL-9879NT	Super Tin + Manzate + MasterLock	2	139	15-Aug
6	UTC - HIL-9879NT				
7	Rec. DSV	Inspire + Manzate + MasterLock	1	61	5-Jul
	B-1399	Super Tin + Manzate + MasterLock	2	101	30-Jul
		Proline + Preference + Manzate + MasterLock	3	147	18-Aug
		Manzate + MasterLock	4	194	4-Sep
		Manzate + MasterLock	5	218	17-Sep
8	Less Aggressive	Inspire + Manzate + MasterLock	1	63	10-Jul
	B-1399	Super Tin + Manzate + MasterLock	2	123	7-Aug
		Proline + Preference + Manzate + MasterLock	3	172	28-Aug
		Manzate + MasterLock	4	207	12-Sep
9	More Aggressive	Inspire + Manzate + MasterLock	1	61	5-Jul
	B-1399	Super Tin + Manzate + MasterLock	2	87	23-Jul
		Proline + Preference + Manzate + MasterLock	3	123	7-Aug
		Super Tin + Manzate + MasterLock	4	172	28-Aug
		Manzate + MasterLock	5	205	11-Sep
10	1st and 15th	Proline + Manzate + MasterLock	1	56	2-Jul
	B-1399	Super Tin + Manzate + MasterLock	2	73	16-Jul
		Manzate + MasterLock	3	106	1-Aug
		Inspire + Manzate + MasterLock	4	139	15-Aug
		Inspire + Manzate + MasterLock Super Tin + Manzate + MasterLock	4 5	139 180	15-Aug 30-Aug

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Laker Agronomy Field, Elkton, MI - 2018 (Page 11 of 12)

No.	Program	Treatment	Арр	DSV	Date
11	3 Spray	Proline + Manzate + MasterLock	1	63	10-Jul
	B-1399	Super Tin + Manzate + MasterLock	2	131	10-Aug
		Manzate + MasterLock	3	205	11-Sep
12	UTC - B-1399				
13	Rec. DSV	Inspire + Manzate + MasterLock	1	52	29-Jun
	C-G515	Super Tin + Manzate + MasterLock	2	93	25-Jul
		Proline + Preference + Manzate + MasterLock	3	128	9-Aug
		Manzate + MasterLock	4	160	23-Aug
		Manzate + MasterLock	5	205	11-Sep
14	Less Aggressive	Inspire + Manzate + MasterLock	1	52	29-Jun
	C-G515	Super Tin + Manzate + MasterLock	2	73	16-Jul
		Proline + Preference + Manzate + MasterLock	3	101	30-Jul
		Super Tin + Manzate + MasterLock	4	139	15-Aug
		Manzate + MasterLock	5	180	30-Aug
15	More Aggressive	Inspire + Manzate + MasterLock	1	44	25-Jun
	C-G515	Super Tin + Manzate + MasterLock	2	65	12-Jul
		Proline + Preference + Manzate + MasterLock	3	93	25-Jul
		Super Tin + Manzate + MasterLock	4	131	10-Aug
		Manzate + MasterLock	5	172	28-Aug
16	1st and 15th	Proline + Manzate + MasterLock	1	56	2-Jul
	C-G515	Super Tin + Manzate + MasterLock	2	73	16-Jul
		Manzate + MasterLock	3	106	1-Aug
		Inspire + Manzate + MasterLock	4	139	15-Aug
		Super Tin + Manzate + MasterLock	5	180	30-Aug
		Manzate + MasterLock	6	207	12-Sep
17	4 Spray	Proline + Manzate + MasterLock	1	61	5-Jul
	C-G515	Super Tin + Manzate + MasterLock	2	93	25-Jul
		Manzate + MasterLock	3	153	20-Aug
		Inspire + Manzate + MasterLock	4	194	4-Sep
18	UTC - C-G515				
19	Rec. DSV	Inspire + Manzate + MasterLock	1	44	25-Jun
	C-G333N	Super Tin + Manzate + MasterLock	2	87	23-Jul
		Proline + Preference + Manzate + MasterLock	3	123	7-Aug
		Manzate + MasterLock	4	153	20-Aug
		Manzate + MasterLock	5	194	4-Sep
20	Less Aggressive	Inspire + Manzate + MasterLock	1	52	29-Jun
	C-G333N	Super Tin + Manzate + MasterLock	2	73	16-Jul
		Proline + Preference + Manzate + MasterLock	3	101	30-Jul
		Super Tin + Manzate + MasterLock	4	139	15-Aug
		Manzate + MasterLock	5	180	30-Aug

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora and Alternaria Leafspot in Sugarbeets Laker Agronomy Field, Elkton, MI - 2018 (Page 12 of 12)

No.	Trt	Treatment	Арр	DSV	Date
21	More Aggressive	Inspire + Manzate + MasterLock	1	44	25-Jun
	C-G333N	Super Tin + Manzate + MasterLock	2	65	12-Jul
		Proline + Preference + Manzate + MasterLock	3	93	25-Jul
		Super Tin + Manzate + MasterLock	4	131	10-Aug
		Manzate + MasterLock	5	172	28-Aug
22	1st and 15th	Proline + Manzate + MasterLock	1	56	2-Jul
	C-G333N	Super Tin + Manzate + MasterLock	2	73	16-Jul
		Manzate + MasterLock	3	106	1-Aug
		Inspire + Manzate + MasterLock	4	139	15-Aug
		Super Tin + Manzate + MasterLock	5	180	30-Aug
		Manzate + MasterLock	6	207	12-Sep
23	5 Spray	Proline + Manzate + MasterLock	1	56	2-Jul
	C-G333N	Super Tin + Manzate + MasterLock	2	77	20-Jul
		Manzate + MasterLock	3	114	4-Aug
		Inspire + Manzate + MasterLock	4	147	18-Aug
		Super Tin + Manzate + MasterLock	5	197	5-Sep
24	UTC - C-G333N				

Control of *Alternaria alternata* and *Cercospora beticola*Leafspot with Registered and Experimental Fungicides

Answer Plot, Bach, MI - 2018

(Page 1 of 3)

Trial Quality: Good Variety: C-RR059 Planted: May 8

Harvested: Oct. 9
Plots: 6 rows x 35 ft, 4 reps
Row Spacing: 22 inches

Soil Info: Loam

%OM: 2.0 pH: 7.6 CEC: 12.9

P: above opt K: above opt

Mn: high B: high
Added N: 135 Lbs
Prev Crop: Corn

Rhizoc Level: Low
LS Control: See trts.
Problems: None

Seeding Rate: 4.1 inches
Rainfall: 15.4 inches
Beets/100 ft: ~215

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

70	plication: JD 3520 tractor mo	diffica plot sprayer, con	% Lea		1, 100 ps	1, 25	gpa								
No.	Treatment	Rate /A	Dama	ge	Net \$	/A	RWSA		RWST		T/A	A	% SUC		
5	Super Tin + Topsin + Manzate + Masterlock (7/2, 7/28)	8 fl oz + 10 fl oz + 1.6 qt + 6.4 fl oz	2.6	h	\$1,330	а	8911	а	252	ab	35.3	а	16.9	а	
	Manzate + Masterlock (7/17, 8/9, 8/30)	1.6 qt + 6.4 fl oz													
	Manzate + Badge + Masterlock (8/23)	1.6 qt + 2 pt + 6.4 fl oz.													
6	Super Tin + Topsin + Manzate + Masterlock (7/2, 7/28)	8 fl oz + 20 fl oz + 1.6 qt + 6.4 fl oz	2.9	gh	\$1,303	ab	8800	ab	261	а	33.7	ab	17.5	а	
	Manzate + Masterlock (7/17, 8/9, 8/30)	1.6 qt + 6.4 fl oz													
	Manzate + Badge + Masterlock (8/23)	1.6 qt + 2 pt + 6.4 fl oz													
4	Super Tin + Manzate + Masterlock (7/2, 7/28)	8 fl oz + 1.6 qt + 6.4 fl oz	5.9 f	fgh	\$1,284	abc	8564	abc	248	ab	34.6	ab	17.1	а	
	Manzate + Masterlock (7/17, 8/9, 8/30)	1.6 qt + 6.4 fl oz													
	Manzate + Badge + Masterlock (8/23)	1.6 qt + 2 pt + 6.4 fl oz													
8	Minerva Duo + Masterlock (7/2, 7/28)	13.6 fl oz + 6.4 fl oz	9.3	efg	\$1,239	abc	8342	abc	258	ab	32.3	b	17.4	а	
	Manzate + Masterlock (7/17, 8/9, 8/30)	1.6 qt + 6.4 fl oz													
	Manzate + Badge + Masterlock (8/24)	1.6 qt + 2 pt + 6.4 fl oz.													

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of *Alternaria alternata* and *Cercospora beticola*Leafspot with Registered and Experimental Fungicides Answer Plot, Bach, MI - 2018 (Page 2 of 3)

No.	Treatment	Rate / A	% Leaf Damage 9-Oct	Net \$/A	RWSA	RWST	T/A	% SUC
1	Inspire + Manzate + Masterlock (7/2)	7 fl oz + 1.6 qt + 6.4 fl oz	9.7 ef	\$1,235 abc	8428 abc	254 ab	33.1 ab	17.3 a
Ш	Manzate + Masterlock (7/19, 8/13, 9/4)	1.6 qt + 6.4 fl oz						
	Proline + Manzate + Masterlock (7/28)	5.7 fl oz + 1.6 qt + 6.4 fl oz						
	Manzate + Badge + Masterlock (8/23)	1.6 qt + 2 pt + 6.4 fl oz						
3	Quadris + Manzate + Masterlock (7/2, 7/28)	15.5 fl oz + 1.6 qt + 6.4 fl oz	11.5 ef	\$1,191 bc	8119 bc	252 ab	32.2 b	16.9 a
	Manzate + Masterlock (7/17, 8/9, 8/30)	1.6 qt + 6.4 fl oz						
	Manzate + Badge + Masterlock (8/23)	1.6 qt + 2 pt + 6.4 fl oz						
2	Priaxor + Manzate + Masterlock (7/2, 7/28)	8 fl oz + 1.6 qt + 6.4 fl oz	12.9 de	\$1,270 abc	8790 ab	259 ab	34.0 ab	17.3 a
Ш	Manzate + Masterlock (7/17, 8/9, 8/30)	1.6 qt + 6.4 fl oz						
	Manzate + Badge + Masterlock (8/23)	1.6 qt + 2 pt + 6.4 fl oz						
7	Propulse + Manzate + Masterlock (7/2, 7/28)	13.6 fl oz + 1.6 qt + 6.4 fl oz	14.3 cde	\$1,280 abc	9068 a	256 ab	35.4 a	17.3 a
	Manzate + Masterlock (7/19, 8/13, 9/4)	1.6 qt + 6.4 fl oz						
	Manzate + Badge + Masterlock (8/23)	1.6 qt + 2 pt + 6.4 fl oz						

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of *Alternaria alternata* and *Cercospora beticola*Leafspot with Registered and Experimental Fungicides Answer Plot, Bach, MI - 2018 (Page 3 of 3)

No.	Treatment	Rate / A	% Lo Dam 9-0	age	Net \$/	⁄A	RW	SA	RW	ST	Τ/,	A	% SU(
11	Manzate + Badge + Masterlock (7/2, 7/12, 7/23, 8/2, 8/13, 8/23, 9/4, 9/12)	1.6 qt + 2 pt + 6.4 fl oz	19.1	cd	\$1,165	С	8302	abc	247	b	33.6	ab	16.7	а
12	Echo + Masterlock (7/2, 7/17, 7/31, 8/13, 8/30, 9/12)	2 pt + 6.4 fl oz	19.5	С	\$1,324	а	8789	ab	257	ab	34.2	ab	17.3	а
9	Manzate + Masterlock (7/2, 7/12, 7/23, 8/2, 8/13, 8/23, 9/4, 9/12)	1.6 qt + 6.4 fl oz	26.0	b	\$1,317	а	8758	ab	253	ab	34.6	ab	17.0	а
10	Badge + Masterlock (7/2, 7/12, 7/23, 8/2, 8/13, 8/23, 9/4, 9/12)	6.4 fl oz + 2 pt	28.0	b	\$1,170	С	7978	С	248	ab	32.1	b	16.8	а
13	Untreated		60.8	а	\$1,015	d	6362	d	214	С	29.7	С	14.7	b
Av	erage		17.	09	1240.	2	840	0.8	250	0.8	33.4	46	16.9) 6
LS	D 5%		6.0)6	104.6	3	655	5.7	12	.2	2.2	28	0.7	4
CV	/ %		24	.7	5.9		5.4	4	3.	4	4.7	7	3.0)

Means followed by the same letter are not significantly different. Duncans New MRT 5%. All treatments were started on June 30th.

Comments: This small plot replicated trial was conducted to evaluate fungicides for control of Alternaria (*Alternaria alternata*) and Cercospora (*Cercospora beticola*) leafspot in sugarbeets. The leafspot infection level was high and consisted of Alternaria (50%) and Cercospora (50%). The Super Tin + Topsin + Manzate spray program provided good control of leafspot and Super Tin + Manzate gave fair control. The Minerva Duo program, Triazole Program and Quadris program were somewhat less effective but were superior to the Priaxor and Propulse programs. Manzate + Badge (8 applic) and Echo treatments (6 applic) provided some level of control and were slightly superior to Badge and Manzate treatments (8 applic). All treatments were significantly better than the Untreated Check. Masterlock (sticker / spreader) was included in all treatments. The Untreated plots lost 4-5 tons/acre and almost 2 points of sugar. Echo is not a registered product and can not be used in sugarbeets.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of Alternaria alternata and Cercospora beticola Leafspot with Registered and Experimental Fungicides Laker Agronomy Field, Elkton, MI - 2018

(Pages 1 of 3)

Trial Quality: Fair-Good Variety: C-RR059 Planted: May 2 Harvested: Oct 18

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Soil Info: Clay Loam **%OM:** 2.7 **pH:** 6.3 **CEC:** 16.3 P: above opt K: above opt

Mn: high B: low Added N: 135 lbs Prev Crop: Soybeans Rhizoc Level: Low Cerc Control: See trts.

Problems: None

Seeding Rate: 4.1 inches Rainfall: 21.6 inches Beets/100 ft: ~170

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment*	Rate /A	I	Dan	afspo nage		Net \$	/A	RWS	SA	RW	/ST	T/.	A	% SU	
			18-S	ер			A				0.51					
12	Echo + Masterlock (7/6, 7/17, 7/30,	2.5 pt + 6.4 fl oz	4.0	J	1.2	g	\$1,164	а	7324	а	251	а	29.2	ab	17.0	а
	8/10, 8/22, 8/30)															
8	Manzate + Super Tin +	1.6 qt + 8 fl oz +	4.5	i	1.7	g	\$998	bc	6454	b	248	ab	25.9	bc	16.8	ab
	Topsin + Masterlock	20 fl oz + 6.4 fl oz		,		9	,,,,,									
	(7/6, 7/30, 8/28)															
	Badge + Masterlock	1.6 qt + 2 pt +														
	(7/16, 8/13)															
2	Manzate + Proline	1.6 qt + 5.7 fl oz +	11.1	ij	1.2	g	\$979	bc	6228	bc	237	b-e	26.3	bc	16.2	b-e
	+ Masterlock	6.4 fl oz														
	(7/6, 8/30)															
	Manzate + Super Tin	1.6 qt + 8 fl oz +														
	+ Masterlock	6.4 fl oz														
	(7/25) Badge + Masterlock	2 pt														
	(8/10)	<i>Σ</i> βι														
7	Manzate + Super Tin	1.6 qt + 8 fl oz +	11.8	ij	4.0	efg	\$1,175	а	7280	а	242	abc	30.1	а	16.4	abc
	+ Masterlock	6.4 fl oz														
	(7/6, 7/30, 8/28)															
	Badge + Masterlock	2 pt + 6.4 fl oz														
	(7/19, 8/13)															
9	Manzate + Masterlock	1.6 qt + 6.4 fl oz	14.5	hij	4.5	efg	\$948	bcd	5933	bc	231	c-f	25.7	С	15.8	c-f
	(7/6, 7/16, 7/25, 8/4,															
	8/14, 8/28, 9/7)															

^{*} All treatments were sprayed with maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18 Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of *Alternaria alternata* and *Cercospora beticola*Leafspot with Registered and Experimental Fungicides Laker Agronomy Field, Elkton, MI - 2018 (Page 2 of 3)

No.	Treatment*	Rate / A		ifspot nage		Net \$/A		RWSA	RWST	T/A	%	
			18-Sep		р	1100 411	-				SUC	
13	Manzate + Propulse	1.6 qt + 13.6 fl oz	17.3 g-j	2.1	g	\$807 d	de	5539 bcd	229 c-f	24.1 c	15.7 c-	·f
	+ Masterlock	+ 6.4 fl oz										
	(7/6, 8/30)											
	Manzate + Super Tin	1.6 qt + 8 fl oz +										
	+ Masterlock	6.4 fl oz										
	(7/25)											
	Badge + Masterlock	2 pt										
	(8/10)											
6	Manzate + Priaxor	1.6 qt + 8 fl oz +	18.8 f-i	6.4 €	efg	\$957 bo	cd	6319 bc	236 b-e	26.7 bc	16.1 b-	е
	+ Masterlock	6.4 fl oz										
	(7/6, 8/13)											
	Manzate + Super Tin	1.6 qt + 8 fl oz +										
	+ Masterlock	6.4 fl oz										
	(7/19, 8/30)											
	Badge + Masterlock	2 pt + 6.4 fl oz										
	(8/2)											
1	Manzate + Inspire XT	1.6 qt + 7 fl oz +	21.4 f-i	9.0	c-f	\$944 b	cd	5970 bc	232 c-f	25.8 bc	15.9 c-	·f
	+ Masterlock	6.4 fl oz										
	(7/6, 8/30)											
	Manzate + Super Tin	1.6 qt + 8 fl oz +										
	+ Masterlock	6.4 fl oz										
	(7/25)											
	Badge + Masterlock	2 pt										
	(8/10)						╛					
4	Manzate + Quadris	1.6 qt + 15.5 fl oz	25.5 e-h	3.2	fg	\$1,011 B	b	6466 b	240 a-d	27.0 abc	16.3 a-	d
	+ Masterlock	+ 6.4 fl oz										
	(7/6, 8/13)											
	Manzate + Super Tin	1.6 qt + 8 fl oz +										
	+ Masterlock	6.4 fl oz										
	(7/19, 8/30)											
	Badge + Masterlock	2 pt + 6.4 fl oz										
	(8/2)											

^{*} All treatments were sprayed with maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18 Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of *Alternaria alternata* and *Cercospora beticola*Leafspot with Registered and Experimental Fungicides Laker Agonomy Field, Elkton, MI - 2018 (Page 3 of 3)

No.	Treatment*	Rate / A	Dan	afspot nage	Net \$/A	RWSA	RWST	T/A	% SUC
5	Manzate + Gem + Masterlock (7/6, 8/13) Manzate + Super Tin	1.6 qt + 3.6 fl oz + 6.4 fl oz 1.6 qt + 8 fl oz +	18-Sep 29.6 d-g		\$888 b-e	5848 bc	229 c-f	25.5 c	15.8 c-f
	+ Masterlock (7/19, 8/30)	6.4 fl oz							
	Badge + Masterlock (8/2)	2 pt + 6.4 fl oz							
3	Manzate + Topguard + Masterlock (7/6, 8/30)	1.6 qt + 14 fl oz + 6.4 fl oz	31.1 b-f	2.1 g	\$937 bcd	5942 bc	224 ef	26.5 bc	15.5 def
	Manzate + Super Tin + Masterlock (7/25)	1.6 qt + 8 fl oz + 6.4 fl oz							
	Badge + Masterlock (8/10)	2 pt							
11	Manzate + Badge + Masterlock (7/6, 7/16, 7/25, 8/4, 8/14, 8/28, 9/7)	1.6 qt + 2 pt + 6.4 fl oz	35.5 b-e	8.1 def	\$858 b-e	5808 bc	227 def	25.6 c	15.6 c-f
10	Badge + Masterlock (7/6, 7/16, 7/25, 8/4, 8/14, 8/28, 9/7)	2 pt + 6.4 fl oz	38.1 b-e	12.1 bcd	\$916 b-e	5863 bc	232 c-f	25.2 c	15.9 c
14	Untreated		95.0 a	80.6 a	\$817 de	4762 d	227 def	20.9 d	15.7 c-f
Ave	rage		25.58	10.81	957.2	6124.1	234.7	26.04	16.05
_	0.5%		11.78	5.09	134.4	783.2	12.0	3.02	0.67
CV	%		28.1	33.2	10.1	9.1	3.6	8.2	2.97

^{*} All treatments were sprayed with maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18 Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Super Tin + Topsin + Manzate (5 applic) and Echo (6 applic) were the only treatments that provided adequate leafspot control. The addition of Topsin to Super Tin improved the performance of Super Tin. Strobi and Triazole based treatments were less effective. The leafspot pressure was very high and consisted of Cercospora (Cercospora beticola) and Alternaria (Alternaria alternata) leafspot. The infection was approximately 50% Cercospora and 50% Alternaria. Untreated plots lost 7-8 tons/acre and 1-2 points of sugar. Echo is not an approved treatment and cannot be used in sugarbeets.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off. **Bold:** Results are not statistically different from top-ranking treatment in each column.

Control of *Alternaria alternata* and *Cercospora beticola*Leafspot with Registered and Experimental Fungicides

Wark, Akron, MI - 2018

(Page 1 of 3)

Trial Quality: Fair-Good Variety: B-149N Planted: May 8 Harvested: Oct 5

Plots: 6 rows X 38 ft, 4 reps **Row Spacing:** 22 inches

Soil Info: Loam%OM: 2.1 pH: 7.8 CEC: 15.9P: below opt K: above optMn: high B: medium

Added N: 135 lbs
Prev Crop: Soybeans

Rhizoc Level: Low Cerc Control: See trts. Problems: Slope

Seeding Rate: 4.1 inches Rainfall: 17.1 inches Beets/100 ft: ~200

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

Ар	plication: JD 3520 tractor	mounted plot spray		<u> </u>			, 100 psi	1, 23	gpa					ſ		
		D			afspo					•	-				%	
No.	Treatment	Rate /A			nage		Net \$	/A	RW	SA	RW	SI	T/	Α	SU	C
			20-8													
10	Super Tin + Topsin +	8 fl oz + 20 fl oz	4.5	е	1.7	g	\$1,600	а	7185	а	204	ab	35.2	ab	14.2	а
	Manzate + Masterlock	+ 1.6 qt														
	(7/5, 8/10)	+ 6.4 fl oz														
	Badge + Manzate	2 pt + 1.6 qt														
	+ Masterlock	+ 6.4 fl oz														
	(7/19, 7/30, 8/30)															
15	Echo + Masterlock	2.5 pt + 6.4 fl oz	6.9	е	2.7	fg	\$1,504	ab	6636	abc	201	abc	33.0	a-d	13.9	ab
	(7/5 ,7/17, 7/30,					_										
	8/10, 8/30)															
9	Super Tin + Topsin +	8 fl oz + 10 fl oz	7.6	е	3.0	fg	\$1,551	ab	6978	ab	208	а	33.5	abc	14.3	а
	Manzate + Masterlock	+ 1.6 qt					,									
	(7/5, 8/10)	+ 6.4 fl oz														
	Badge + Manzate	2 pt + 1.6 qt	1													
	+ Masterlock	+ 6.4 fl oz														
	(7/19, 7/30, 8/30)															
6	Gem + Manzate	3.6 fl oz + 1.6 qt	9.9	е	3.8	fa	\$1,539	ab	6951	ab	197	а-е	35.3	а	13.6	a-d
	+ Masterlock	+ 6.4 fl oz				- 3	7.,,,,,,,,,									
	(7/5, 8/10)															
	Super Tin + Manzate	8 fl oz + 1.6 qt	1													
	+ Masterlock	+ 6.4 fl oz														
	(7/19, 8/30)															
	Badge + Masterlock	2 pt + 6.4 fl oz	1													
	(8/2)															
7	Priaxor + Manzate	8 fl oz + 1.6 qt	11.0	е	4.6	fa	\$1,357	bcd	6237	b-e	191	b-f	32.6	a-f	13.4	b-e
1	+ Masterlock	+ 6.4 fl oz				. 9	4 1,001		0_0.	~ 0				. .		
	(7/5, 8/10)															
	Super Tin + Manzate	8 fl oz + 1.6 qt	1													
	+ Masterlock	+ 6.4 fl oz														
	(7/19, 8/30)															
	Badge + Masterlock	2 pt + 6.4 fl oz	1													
	(8/2)	2 pt : 011 11 02														
5	Quadris + Manzate	15 fl oz + 1.6 qt	11.6	е	4.9	fg	\$1,372	bcd	6181	b-e	190	c-f	32.5	a-f	13.4	b-e
	+ Masterlock	+ 6.4 fl oz		•		.9	J.,012	234	0.01	~ 0	.55	٠.		٠.	10.7	~ 0
	(7/5, 8/10)															
	Super Tin + Manzate	8 fl oz + 1.6 qt														
	+ Masterlock	+ 6.4 fl oz														
	(7/19, 8/30)															
	Badge + Masterlock	2 pt + 6.4 fl oz														
	(8/2)	_ p c														
	(0/2)															

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*} All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Control of Alternaria alternata and Cercospora beticola Leafspot with Registered and Experimental Fungicides Wark, Akron, MI - 2018

(Page 2 of 3)

No.	Treatment	Rate / A	Dan	afspot nage		Net \$/	′ A	RWS	SA	RW	ST	Т/.	Ą	% SU	
8	Super Tin + Manzate + Masterlock (7/5, 8/10)	8 fl oz + 1.6 qt + 6.4 fl oz	20-Sep 11.8 e			\$1,439	abc	6433	a-d	201	abc	32.0	b-f		
	Badge + Manzate + Masterlock (7/19, 7/30, 8/30)	2 pt + 1.6 qt + 6.4 fl oz													
11	Manzate + Masterlock (7/5, 7/16, 7/26, 8/10, 8/30)	1.6 qt + 6.4 fl oz	18.0 de												
2	Proline + Manzate + Masterlock (7/5, 8/30)	5.7 fl oz + 1.6 qt + 6.4 fl oz	27.6 cd	11.5 ef	g	\$1,442	abc	6450	a-d	197	a-d	32.6	а-е	13.8	abc
	Super Tin + Manzate + Masterlock (7/26)	8 fl oz + 1.6 qt + 6.4 fl oz													
Ш	Badge + Masterlock (8/10)	2 pt + 6.4 fl oz			١										
1	Inspire XT + Manzate + Masterlock (7/5, 8/30)	7 fl oz + 1.6 qt + 6.4 fl oz	28.1 cd	12.5 ef	g	\$1,290	c-f	5752	d-g	185	d-g	31.2	c-g	12.9	def
	Super Tin + Manzate + Masterlock (7/26)	8 fl oz + 1.6 qt + 6.4 fl oz													
	Badge + Masterlock (8/10)	2 pt + 6.4 fl oz			1										
3	Minerva + Manzate + Masterlock (7/5, 8/30)	13 fl oz + 1.6 qt + 6.4 fl oz	31.8 cd	12.1 ef	fg	\$1,238	c-f	5548	efg	189	c-f	29.3	fgh	13.2	b-f
	Super Tin + Manzate + Masterlock (7/26)	8 fl oz + 1.6 qt + 6.4 fl oz													
Ш	Badge + Masterlock (8/10)	2 pt + 6.4 fl oz			١										
4	Topguard + Manzate + Masterlock (7/5, 8/30)	14 fl oz + 1.6 qt + 6.4 fl oz	35.5 c	15.4 е	f	\$1,275	c-f	5700	d-g	192	b-f	29.8	d-h	13.3	b-e
	Super Tin + Manzate + Masterlock (7/26)	8 fl oz + 1.6 qt + 6.4 fl oz													
	Badge + Masterlock (8/10)	2 pt + 6.4 fl oz													

^{*} All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18 Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

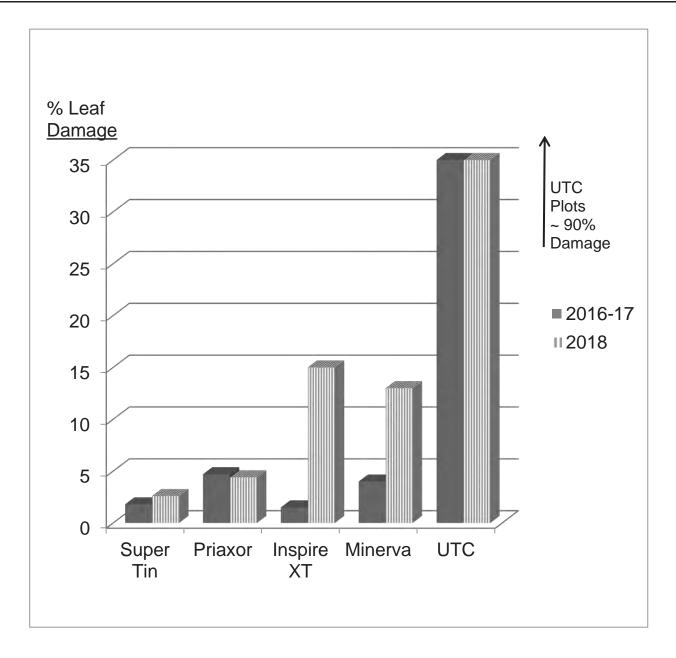
Control of *Alternaria alternata* and *Cercospora beticola*Leafspot with Registered and Experimental Fungicides Work, Akron, ML, 2018

Wark, Akron, MI - 2018

(Page 3 of 3)

No.	Treatment	Rate / A	Dar	afspot nage 28-Aug	Net \$/A	RWSA	RWST	T/A	% SUC
13	Manzate + Masterlock (7/5)	1.6 qt + 6.4 fl oz	38.1 c		\$1,195 def	5413 efg	184 d-g	29.3 e-h	12.9 def
	Manzate + Badge + Masterlock (7/16, 7/26, 8/10, 8/30)	1.6 qt + 2 pt + 6.4 fl oz							
17	Topguard + Manzate + Masterlock (7/5, 8/30)	14 fl oz + 1.6 qt + 6.4 fl oz	57.5 b	31.7 c	\$1,181 def	5252 fg	184 d-g	28.6 gh	12.9 def
	Super Tin + Manzate + Masterlock (7/26)	8 fl oz + 1.6 qt + 6.4 fl oz							
	Badge + Masterlock (8/10)	2 pt + 6.4 fl oz							
16	Propulse + Manzate + Masterlock (7/5, 8/30)	13.6 fl oz + 1.6 qt + 6.4 fl oz	57.5 b	28.6 cd	\$1,138 ef	5398 efg	181 fg	29.9 d-h	12.7 ef
	Super Tin + Manzate + Masterlock (7/26)	8 fl oz + 1.6 qt + 6.4 fl oz							
Ш	Badge + Masterlock (8/10)	2 pt + 6.4 fl oz							
14	Cuprofix + Masterlock (7/5, 7/16, 7/26, 8/10, 8/30)	2 lb + 6.4 fl oz	62.5 b	47.8 b	\$1,117 f	4986 g	175 gh	28.4 gh	12.4 fg
12	Badge + Masterlock (7/5, 7/16, 7/26, 8/10, 8/30)	2 pt + 6.4 fl oz	68.8 b	36.3 c	\$1,235 c-f	5457 efg	186 d-g	29.3 e-h	13.1 c-f
18	Untreated		95.0 a	27.5 cd	\$1,178 def	4952 g	184 efg	27.0 h	12.9 def
Av	erage		32.42	15.30	\$1,330.0	5951.7	190.9	31.08	13.32
LS	D 5%		14.48	11.11	178.2	748.9	11.5	2.78	0.70
CV	/ %		29.1	43.9	9.7	9.1	4.3	6.4	3.8

^{*} All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18 Means followed by the same letter are not significantly different. Duncans New MRT 5%.


Comments: Super Tin + Topsin + Manzate (5 applic) and Echo (6 applic) gave the best leafspot control in this trial. Cercospora (*Cercospora beticola*) and (*Alternaria alternata*) leafspot infestation levels were very high. The Cercospora to Alternaria ratio was about 50:50. The addition of Topsin to Super Tin improved the performance of Super Tin. Strobilurin based treatments provided better leafspot control than did Triazole based treatments. Untreated plots lost 5 tons/acre and 1-2 points of sugar. Echo is not an approved treatment and cannot be used in sugarbeets.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Average of 6 Locations - 2016, 2017 and 2018

(Page 1 of 15)

Comments: Six fungicide tank mix leafspot trials were conducted by Michigan Sugar from 2016 to 2018. Cercospora leafspot (*Cercospora beticola*) and Alternaria leafspot (*Alternaria alternata*) were present in the trials at an estimated ratio 60%: 40% in 2016-17 and close to a 50%: 50% ratio in 2018. Leafspot pressure was very high in all trials. Fungicide treatments were applied with a compressed air small plot sprayer mounted on a compact tractor in 25 gallons of water per acre at 100 PSI. Super Tin and Minerva Duo provided good leafspot control and the need for a tank mix partner was less than for triazole and strobilurin fungicides. Triazole fungicides (Inspire XT and Minerva) tank mixed with Manzate MAX provided good leafspot control in 2016-17 trials but not in 2018. Priaxor (strobilurin fungicide) gave fairly good control in 2016, 2017 and 2018. Alternaria infestations appear to be increasing and that would favor strobilurin over triazole fungicides. Tank mixing improved results for all fungicides but especially for the triazole and strobilurin groups. Sugarbeet yields, quality and grower income followed leaf damage.

Average of 6 Locations - 2016, 2017 and 2018

(Page 2 of 15)

2 Michigan Locations (2018)

No.	Treatment	Tank Mix	fl oz/ acre	% Leafs Dam	spot		\$/A	RW	SA	RW	ST	Τ//	Ą	% Sug	-
8	Super Tin 4L	Yes	8	2.6	d	\$1,130	а	6442	а	216	а	29.5	а	14.9	а
10	Priaxor	Yes	8	4.4	cd	\$1,000	abc	6126	ab	216	а	27.8	ab	14.9	а
7	Super Tin 4L	No	8	6.1	cd	\$1,083	ab	6026	abc	214	ab	27.9	ab	14.8	а
2	Inspire XT	Yes	7	15.2	cd	\$1,041	abc	6054	abc	212	ab	28.2	ab	14.7	ab
4	Minerva	Yes	13	18.4	С	\$1,121	а	6437	а	213	ab	30.0	а	14.7	ab
3	Minerva	No	13	39.3	b	\$945	bcd	5303	bc	199	cd	26.2	b	13.9	С
9	Priaxor	No	8	47.1	b	\$905	cd	5275	bc	201	cd	25.8	b	14.2	bc
1	Inspire XT	No	7	52.4	b	\$929	bcd	5240	С	205	bc	25.7	b	14.2	bc
11	Untreated Check			90.7	а	\$803	d	4366	С	191	d	22.8	b	13.3	d
Ave	erage			30.	70	\$995	5.3	5690	6.5	20	7.4	27.	10	14.4	40
	SD 5%			13.	04	155.	.2	788	.9	9.	9	2.7	'8	0.5	55
CV	%			27	.3	10.0	0	8.9	9	3.	1	6.0	6	2.4	4

4 Michigan Locations (2016 - 2017)

No.	Treatment	Tank Mix	fl oz/ acre	% Leafs Dama	pot		\$/A	RW	SA	RV	/ST	T/	Α	% Sug	
6	Minerva Duo	Yes	16	1.1	g	\$1,425	а	9570	а	256	abc	38.2	ab	17.3	ab
2	Inspire XT	Yes	7	1.4	fg	\$1,389	ab	9638	а	258	а	38.4	а	17.5	а
8	Super Tin	Yes	8	1.8	fg	\$1,359	a-d	9087	abc	252	a-d	37.3	abc	17.2	abc
5	Minerva Duo	No	16	2.1	fg	\$1,391	ab	9499	ab	257	ab	37.7	abc	17.5	а
7	Super Tin	No	8	3.2	ef	\$1,370	abc	9058	abc	251	bcd	37.4	abc	17.1	bcd
4	Minerva	Yes	13	4.0	de	\$1,289	bcd	9117	abc	250	cd	37.6	abc	17.1	bcd
10	Priaxor	Yes	8	4.7	de	\$1,263	de	8878	С	248	de	36.6	bcd	16.9	cde
1	Inspire XT	No	7	5.3	d	\$1,307	bcd	8954	bc	248	de	37.2	abc	17.0	cde
3	Minerva	No	13	9.9	С	\$1,268	cde	8638	cd	246	de	36.3	cd	16.8	de
9	Priaxor	No	8	23.0	b	\$1,188	е	8277	d	243	е	35.4	d	16.7	е
11	Untreated Check			92.8	а	\$1,044	f	6750	е	215	е	32.4	d	15.1	е
Ave	verage			13.5	58	\$1,29	9.5	8860	0.6	24	7.8	36.	76	16.	92
LSI	O 5%		1.6	8	92.9	9	523	3.2	5	.9	1.4	13	0.3	33	
CV	%			8.2	2	4.7	7	3.9	9	1	.6	2.	6	1.	3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Avg of 2 Locations Elkton, Pinconning - 2018

(Page 3 of 15)

Trial Quality: Fair-Good **Soil and other Info:** See individual trials **Variety:** C-G333NT

Rhizoc Level: Low Cerc Control: See trts. Problems: None

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Seeding Rate: 4.1 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

Beets/100 ft: ~210

No.	Treatment***	Tank		o,	% Leafspo	t Damag	е		Net :	¢/^
NO.	Treatment	Mix**	Avg	g 2	24-9	Sep	3-8	Sep	Net .	φ/ / \
8	Super Tin + Topsin* Badge* Manzate*	Yes	1.4	g	2.0	g	0.9	е	\$1,195	а
7	Super Tin* Badge* Manzate*	Yes	2.0	g	2.5	g	1.6	е	\$1,127	ab
10	Priaxor* Super Tin* Badge* Manzate*	Yes	2.9	g	4.0	fg	1.8	de	\$1,015	c-g
9	Gem SC* Super Tin* Badge*	Yes	3.0	g	4.1	fg	1.9	cde	\$1,004	c-h
19	Super Tin + Topsin* Badge* Super Tin* Manzate*	No	3.6	fg	4.3	fg	3.0	cde	\$1,092	bc
2	Proline + Preference* Super Tin* Badge*	Yes	4.3	fg	5.7	fg	3.0	cde	\$1,047	b-f
18	Super Tin* Badge* Super Tin* Manzate*	No	4.7	fg	5.7	fg	3.7	cde	\$1,119	ab
3	Minerva* Super Tin* Badge*	Yes	9.0	ef	15.0	ef	3.0	cde	\$1,084	bc
1	Inspire XT* Super Tin* Badge*	Yes	9.3	ef	13.8	ef	4.8	С	\$1,053	b-f
5	Manzate* (6 applic) Topguard* Super Tin* Badge* Manzate*	No Yes	11.4	e e	21.1 19.5	e e	1.8 3.5	de cde	\$1,066 \$1,021	c-g

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/a)

^{***}All Treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Avg of 2 Locations Elkton, Pinconning - 2018

(Page 4 of 15)

No.	Treatment***	Tank		9	6 Leafspo	t Damag	e		Not	¢/^
NO.	rreatment	Mix**	Avç	j 2	24-5	Бер	3-S	ер	Net :	Φ/A
4	Enable + Preference* Super Tin* Badge* Manzate*	Yes	14.6	е	24.5	е	4.7	cd	\$970	d-h
14	Minerva* Super Tin* Badge* Manzate*	No	24.3	cd	39.1	cd	9.5	b	\$959	e-h
20	Gem SC* Super Tin* Badge*	No	24.8	cd	40.8	cd	8.8	b	\$1,014	c-g
13	Proline + Preference* Super Tin* Badge* Manzate*	No	25.5	bcd	41.5	bcd	9.6	b	\$1,005	c-h
21	Priaxor* Super Tin* Badge*	No	27.7	bcd	46.2	bcd	9.3	b	\$910	h
15	Enable + Preference* Super Tin* Badge* Manzate*	No	29.0	bc	49.0	bc	9.1	b	\$1,006	c-h
12	Inspire* Super Tin* Badge* Manzate*	No	29.4	bc	49.8	bc	9.0	b	\$954	fgh
16	Topguard* Super Tin* Badge* Manzate*	No	31.4	b	51.9	b	10.9	b	\$944	gh
22	Manzate* (3 applic)	No	64.1	а	88.4	а	39.9	а	\$819	i
LS	erage D 5%		16. 5.3	30	26. 9.6	62	6.8 2.5	4	\$1,02 82.	.4
CV	/ %		25	.1	28	.7	29.	2	6.4	4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/a)

^{***}All Treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

MICHIGAN SUGAR Avg of 2 Locations Elkton, and Pinconning - 2018 (Page 5 of 15)

No.	Treatment***	Tank Mix**	RWS	SA	RW	ST	Т/.	A	% S	Suc	% C	JP
8	Super Tin + Topsin*	Yes	6877	а	221	а	31.1	а	15.0	а	95.4	а
	Badge*											
7	Manzate*	V	0.474	-1-	000	-1	00.5	a la	45.0	-1	05.0	- 1
7	Super Tin* Badge*	Yes	6471	ab	220	ab	29.5	ab	15.0	ab	95.3	ab
	Manzate*											
10	Priaxor*	Yes	6128	b-e	218	abc	28.1	bcd	14.9	abc	95.3	abc
	Super Tin*					0.10			•		0010	
	Badge*											
	Manzate*											
9	Gem SC*	Yes	6010	b-e	212	c-f	28.3	bcd	14.6	b-f	95.0	a-g
	Super Tin*											
	Badge*											
40	Manzate*	N.I.	C447		040		20.0	b a	440	1.6	04.0	1.
19	Super Tin + Topsin*	No	6117	b-e	212	d-g	28.9	bc	14.6	b-f	94.9	d-g
	Badge* Manzate*											
2	Proline + Preference*	Yes	6070	b-e	214	b-e	28.3	bcd	14.8	а-е	94.7	fg
-	Super Tin*								1410	u o	0	·9
	Badge*											
	Manzate*											
18	Super Tin*	No	6207	bcd	215	a-d	28.8	bc	14.8	a-d	94.9	c-g
	Badge*											
	Super Tin*											
	Manzate*	V	0040	1 .	044	1.	00.5	a la	445		05.0	
3	Minerva* Super Tin*	Yes	6240	bc	211	d-g	29.5	ab	14.5	c-h	95.0	a-g
	Badge*											
	Manzate*											
1	Inspire XT*	Yes	6076	b-e	214	b-e	28.4	bcd	14.6	b-f	95.2	a-d
	Super Tin*											
	Badge*											
	Manzate*											
11	Manzate* (6 applic)	No	5854	c-g	211	d-g	27.7	b-e	14.5	c-i	95.1	а-е
5	Topguard*	Yes	5918	c-f	210	d-g	28.1	bcd	14.5	c-i	94.9	b-g
	Super Tin*											
	Badge*											
\Box	Manzate*											

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/a)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Avg of 2 Locations Elkton, and Pinconning - 2018 (Page 6 of 15)

No.	Treatment***	Tank Mix**	RWS	SA	RWS	ST	T/	Ά	% S	Suc	% C	JР
4	Enable + Preference* Super Tin* Badge* Manzate*	Yes	5637	e-h	213	c-f	26.5	de	14.6	c-g	95.2	а-е
14	Minerva* Super Tin* Badge* Manzate*	No	5395	gh	202	h	26.7	de	14.0		95.0	a-f
20	Gem SC* Super Tin* Badge*	No	5771	c-h	211	d-g	27.4	b-e	14.5	d-i	95.2	а-е
13	Proline + Preference* Super Tin* Badge* Manzate*	No	5696	d-h	205	gh	27.8	b-e	14.2	hij	95.0	a-g
21	Priaxor* Super Tin* Badge*	No	5291	h	204	h	26.0	е	14.2	g-j	94.5	g
15	Enable + Preference* Super Tin* Badge* Manzate*	No	5641	e-h	206	fgh	27.4	b-e	14.2	hij	95.2	а-е
12	Inspire XT* Super Tin* Badge* Manzate*	No	5376	gh	207	fgh	25.9	е	14.2	f-j	95.0	a-f
16	Topguard* Super Tin* Badge* Manzate*	No	5331	h	205	gh	26.0	е	14.1	ij	95.0	a-f
22	Manzate* (3 applic)	No	4453	i	192	i	23.2	f	13.4	k	94.7	efg
Αv	erage		5828	0	210	2	27.	68	14.	46	95.	03
	D 5%		432.		5.7		1.7		0.3		0.3	
1 2			102.	•	5.7		<u> </u>		0.0	<i>-</i> Т	0.0	,,,

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

5.9

2.2

5.1

1.9

0.3

Comments: Triazole, Strobi, and Super Tin Fungicides were applied to sugarbeets for control of Cercospora and Alternaria leafspot. Each fungicide was applied alone and in a tank mix with Manzate Max at 1.6 qt/A. The leafspot infection was very high at the Elkton site and high at the Pinconning site.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Bold: Results are not statistically different from top-ranking treatment in each column.

CV %

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/a)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

MICHIGAN SUGAR Avg of 2 Locations Elkton, and Pinconning - 2018 (Page 7 of 15)

Fungicide Effect (Average of Tank mix and No Tank Mix)

No.	Treatment***		afspot Dar		\$/A	RWSA	RWST	T/A	% Suc
NO.	Treatment	Avg 2	24-Sep	3-Sep	ΨΙΑ	INVISA	KWSI	1//	/8 Suc
8	Super Tin + Topsin* Badge* Super Tin* Manzate*	2.5 e	3.1 e	1.9 d	\$1,143 a	6497 a	216 ab	30.0 a	14.8 ab
7	Super Tin* Badge* Badge + Masterlock* Manzate*	3.4 е	4.1 e	2.6 cd	· ,	6339 ab	218 a	29.1 ab	14.9 a
9	Gem SC* Super Tin* Badge*	13.9 d	22.5 d	5.4 bc		5891 bc	212 abc	27.8 bc	14.5 abc
2	Proline + Preference* Super Tin* Badge*	14.9 d	23.6 d	6.3 b	\$1,026 b	5883 bc	210 bc	28.0 abc	14.5 bc
10	Priaxor* Super Tin* Badge*	15.3 cd	25.1 cd	5.6 bc	\$963 b	5710 c	211 abc	27.0 bcd	14.5 abc
3	Minerva* Super Tin* Badge*	16.6 bcd	27.0 bcd	6.2 b	\$1,022 b	5818 c	207 cd	28.1 abc	14.3 cd
1	Inspire XT* Super Tin* Badge*	19.4 bcd	31.8 bc	6.9 b	\$1,004 b	5726 c	210 bc	27.2 bcd	14.4 bc
5	Topguard* Super Tin* Badge*	21.4 bc	35.7 bc	7.2 b	\$982 b	5624 cd	208 cd	27.1 bcd	14.3 cd
4	Enable + Preference* Super Tin* Badge*	21.8 b	36.8 b	6.9 b	\$988 b	5639 cd	209 с	26.9 cd	14.4 c
11	Manzate*	37.8 a	54.7 a	20.9 a	\$943 d	5153 c	201 d	25.4 d	13.9 e
Ave	erage	16.70	26.44	6.98	\$1,020.2	5827.9	210.1	27.68	14.45
	D 5%	3.74	6.80	2.54	58.3	305.5	4.0	1.27	0.24
CV	%	25.1	28.7	29.2	6.4	5.9	2.2	5.1	1.9

Tank Mix Effect (Average of all Fungicide Treatments)

No	Transmans	% L	eaf	fspot	Dar	nage		¢/A		DW	- A	DVA	эт	T/A		0/ 6	
No.	Treatment	Avg 2		24-S	ер	3-Se	∍p	\$/A		RWS)A	RWS	5 1	T/A	`	% S	ouc
1	Tank Mix	7.4 b	1	12.1	b	2.8	b	\$1,058	а	6124	а	214	а	28.6	а	14.7	а
2	No Tank Mix	26.1 a	4	11.2	а	11.0	а	\$982	b	5526	b	205	b	26.8	b	14.2	b
Ave	erage	16.79		26.6	35	6.9	2	\$1,019	.9	5824	ł.8	209	.7	27.7	3	14.	43
LS	D 5%	2.06		3.3	0	0.8	9	53.1		278	.6	2.8	3	1.0	1	0.1	17
CV	%	23.2		23.	4	24.	3	9.8		9.0)	2.5	5	6.9)	2.	2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Laker Agronomy Field, Elkton, MI - 2018

(Page 8 of 15)

Trial Quality: Good Variety: C-G333NT Planted: May 2 Harvested: Oct 17

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches Soil Info: Clay Loam % OM: 2.7 pH: 6.3 CEC: 16.3 P: above opt K: above opt

Mn: high B: low
Added N: 135 lbs
Prev Crop: Soybeans

Rhizoc Level: Low Cerc Control: See trts.

Problems: None

Seeding Rate: 4.1 inches Rainfall: 21.5 inches Beets/100 ft: ~180

Application: JD 3520 Tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment***	Tank Mix**	Applic Timing			eafspo	t Dam	nage		Net \$	/Δ
NO.	Heatment	Tallk Wilk	Applic Hilling	Av	g 2	24-5	Бер	3-8	Зер	NGL W	<i>/</i> ^
8	Super Tin + Topsin* Badge* Manzate* (no tank mix)	Yes	7/3, 7/27, 8/20 7/17, 8/10 9/4	1.8	g	2.7	f	1.0	f	\$1,431	а
10	Priaxor* Super Tin* Badge* Manzate* (no tank mix)	Yes	7/3, 8/10 7/17, 8/20 7/31 9/4	2.8	g	4.0	f	1.7	f	\$1,306	bc
7	Super Tin* Badge* Manzate* (no tank mix)	Yes	7/3, 7/27, 8/20 7/17, 8/10 9/4	3.0	g	3.2	f	2.7	ef	\$1,252	cde
9	Gem SC* Super Tin* Badge* Manzate* (no tank mix)	Yes	7/3, 8/10 7/17, 8/20 7/31 9/4	3.8	g	5.3	f	2.4	f	\$1,215	c-f
2	Proline + Preference* Super Tin * Badge* Manzate* (no tank mix)	Yes	7/3, 8/14 7/20 8/4 8/30	3.9	g	6.4	f	1.5	f	\$1,239	c-f
18	Super Tin* Badge* Manzate*	No	7/3, 7/27, 8/20 7/17, 8/10 9/4	4.0	g	5.2	f	2.7	ef	\$1,392	ab
19	Super Tin + Topsin* Badge* Manzate*	No	7/3, 7/27, 8/20 7/17, 8/10 9/4	6.0	fg	7.0	f	5.1	def	\$1,271	bcd
1	Inspire XT* Super Tin* Badge* Manzate* (no tank mix)	Yes	7/3, 8/14 7/20 8/4 8/30	10.3	efg	18.6	ef	2.0	f	\$1,255	cde
3	Minerva* Super Tin* Badge* Manzate* (no tank mix)	Yes	7/3, 8/14 7/20 8/4 8/30	12.1	efg	22.3	ef	1.9	f	\$1,258	cde
5	Topguard* Super Tin* Badge* Manzate* (no tank mix)	Yes	7/3, 8/14 7/20 8/4 8/30	15.9	ef	30.0	е	1.7	f	\$1,201	c-f

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/A)

^{***}All Treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Laker Agronomy Field, Elkton, MI - 2018

(Page 9 of 15)

No.	Treatment***	Tank Mix**	Applic Timing		% L	.eafspo	t Dam	age		Net \$:/ Δ
		· a	7.ppeg	Αν <u>ς</u>	j 2	24-5	Sep	3-8	ер	1101 \$	
4	Enable + Preference* Super Tin* Badge* Manzate* (no tank mix)	Yes	7/3, 8/14 7/20 8/4 8/30	19.3	е	36.9	de	1.8	f	\$1,161	d-g
11	Manzate* (6 applic)	No	7/3, 7/13, 7/23 8/2, 8/13, 8/23	19.8	е	37.4	de	2.3	f	\$1,202	c-f
13	Proline + Preference* Super Tin* Badge* Manzate*	No	7/3, 8/14 7/20 8/4 8/30	33.9	cd	62.6	bc	5.1	def	\$1,259	cde
14	Minerva* Super Tin* Badge* Manzate*	No	7/3, 8/14 7/20 8/4 8/30	34.1	cd	59.4	bc	8.8	bcd	\$1,134	d-g
12	Inspire XT* Super Tin* Badge* Manzate*	No	7/3, 8/14 7/20 8/4 8/30	40.7	bc	74.4	ab	7.0	de	\$1,162	d-g
15	Enable + Preference* Super Tin* Badge* Manzate*	No	7/3, 8/14 7/20 8/4 8/30	41.6	bc	73.8	ab	9.4	bcd	\$1,107	fgh
16	Topguard* Super Tin* Badge* Manzate*	No	7/3, 8/14 7/20 8/4 8/30	42.1	bc	75.0	ab	9.3	bcd	\$1,054	gh
20	Gem SC* Super Tin* Badge*	No	7/3, 8/10 7/17, 8/28 7/31	44.9	b	76.9	ab	13.0	b	\$1,196	c-f
21	Priaxor* Super Tin* Badge*	No	7/3, 8/10 7/17, 8/28 7/31	45.3	b	78.8	ab	11.8	bc	\$1,139	d-g
22	Manzate* (3 applic)	No	7/13, 8/2, 8/23	59.4	а	92.5	а	26.3	а	\$1,001	h

Average	22.42	39.07	5.76	\$1,204.6
LSD 5%	9.19	17.71	3.92	116.4
CV %	32.6	36.0	54.0	7.7

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/A)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Laker Agronomy Field, Elkton, MI - 2018

(Page 10 of 15)

No.	Treatment***	Tank Mix**	Applic Timing	RW	SA	RW	/ST	T/	Ά.	% \$	Suc
8	Super Tin + Topsin* Badge*	Yes	7/3, 7/27, 8/20 7/17, 8/10	8593	а	241	а	35.6	а	16.2	а
Ш	Manzate* (no tank mix)		9/4								
10	Priaxor*	Yes	7/3, 8/10	8102	ab	235	abc	34.5	ab	15.9	abc
	Super Tin*		7/17, 8/20								
	Badge*		7/31								
	Manzate* (no tank mix)	.,	9/4					24.0		15.0	
7	Super Tin*	Yes	7/3, 7/27, 8/20	7541	bcd	237	ab	31.9	b-e	15.9	ab
	Badge*		7/17, 8/10								
	Manzate* (no tank mix) Gem SC*	Yes	9/4	7500	la a al	220	b a	22.4	ا م	4 F F	la a al
9	Super Tin*	res	7/3, 8/10 7/17, 8/20	7533	bcd	228	b-e	33.1	a-u	15.5	bcd
	Badge*		7/17, 6/20								
	Manzate* (no tank mix)		9/4								
2	Proline + Preference*	Yes	7/3, 8/14	7355	cde	228	b-e	32.2	b-e	15.5	bcd
-	Super Tin*	. 00	7/20	1000	000		20			10.0	500
1 1	Badge*		8/4								
	Manzate* (no tank mix)		8/30								
18	Super Tin*	No	7/3, 7/27, 8/20	8087	abc	234	a-d	34.6	ab	15.9	ab
	Badge*		7/17, 8/10								
	Manzate*		9/4								
19	Super Tin + Topsin*	No	7/3, 7/27, 8/20	7470	bcd	223	ef	33.5	abc	15.3	def
1 1	Badge*		7/17, 8/10								
Ш	Manzate*		9/4								
1	Inspire XT*	Yes	7/3, 8/4	7553	bcd	227	cde	33.2	a-d	15.5	bcd
	Super Tin*		7/20								
	Badge*		8/4								
	Manzate* (no tank mix)	.,	8/30							4=0	
3	Minerva*	Yes	7/3, 8/14	7571	bcd	225	c-f	33.5	abc	15.3	def
	Super Tin*		7/20								
1 1	Badge*		8/4								
5	Manzate* (no tank mix) Topguard*	Yes	8/30 7/3, 8/14	7268	def	225	def	32.3	h. o	15.3	def
3	Super Tin*	162	7/3, 6/14 7/20	7200	uei	223	uei	32.3	D-E	15.5	uei
	Badge*		8/4								
	Manzate* (no tank mix)		8/30								
4	Enable + Preference*	Yes	7/3, 8/14	7027	def	220	efg	32.0	b-e	15.4	cde
'	Super Tin*	. 55	7/0, 6/14	. 52.	۵٥.		5.9		~ 0		030
	Badge*		8/4								
	Manzate* (no tank mix)		8/30								

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/a)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Laker Agronomy Field, Elkton, MI - 2018

(Page 11 of 15)

No.	Treatment***	Tank Mix**	Applic Timing	RW	'SA	RW	/ST	T/A	% S	Suc
11	Manzate* (6 applic)	No	7/3, 7/13, 7/23 8/2, 8/13, 8/23	6957	d-g	217	fgh	32.1 b-e	15.0	efg
13	Proline + Preference* Super Tin* Badge* Manzate*	No	7/3, 8/14 7/20 8/4 8/30	7442	bcd	222	ef	33.6 abc	15.1	d-g
14	Minerva* Super Tin* Badge* Manzate*	No	7/3, 8/14 7/20 8/4 8/30	6685	efg	217	fgh	30.8 cde	14.8	e-h
12	Inspire XT* Super Tin* Badge* Manzate*	No	7/3, 8/14 7/20 8/4 8/30	6845	d-g	226	c-f	30.2 def	15.3	def
15	Enable + Preference* Super Tin* Badge* Manzate*	No	7/3, 8/14 7/20 8/4 8/30	6535	fg	208	hi	31.4 cde	14.4	hij
16	Topguard* Super Tin* Badge* Manzate*	No	7/3, 8/14 7/20 8/4 8/30	6253	gh	208	hi	29.9 ef	14.8	f-i
20	Gem SC* Super Tin* Badge*	No	7/3, 8/10 7/17, 8/28 7/31	7122	def	223	ef	32.0 b-e	15.2	d-g
21	Priaxor* Super Tin* Badge*	No	7/3, 8/10 7/17, 8/28 7/31	6874	d-g	212	ghi	32.4 b-e	14.7	g-j
22	Manzate* (3 applic)	No	7/13, 8/2, 8/23	5723	h	204	i	28.0 f	14.2	j

Average	7185.0	223.0	32.34	15.26
LSD 5%	635.0	8.3	n.s.	0.47
CV %	7.0	3.0	6.2	2.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Leafspot (*Cercospora beticola* and *Alternaria alternata*) pressure was very high and consisted of equal amounts of Cercospora and Alternaria leafspot. Tank mixing fungicides with Manzate MAX improved leafspot control significantly. Super Tin treatments provided the best leafspot control. The addition of Topsin to Super Tin improved disease control. Priaxor and Gem (strobilurin fungicides) provided better leafspot control than triazoles did.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/a)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Wackerle, Pinconning, MI - 2018

(Page 12 of 15)

Trial Quality: Fair-Good Variety: C-G333NT Planted: May 14 Harvested: Sept 19

Harvested: Sept 19
Plots: 6 rows X 38 ft, 5 reps
Row Spacing: 22 inches

Soil Info: Sandy Loam

% OM: 5.3 pH: 7.1 CEC: 15.9

P: above opt **K:** above opt

Mn: med B: med Added N: 130-135 lbs Prev Crop: Wheat Rhizoc Level: Low Cerc Control: See Trts.

Problems: none

Seeding Rate: 4.1 inches
Rainfall: 11.6 inches
Beets/100 ft: ~230

Application: JD 3520 Tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

		Tank				eafspo		age			
No.	Treatment***	Mix**	Applic Timing	Δν	g 2		Sep		Бер	Net S	5/A
8	Super Tin + Topsin*	Yes	6/25, 7/18, 8/13	1.0	g	1.2	g	0.1	h	\$971	abc
	Badge*		7/9, 8/3		J		Ū				
	Badge* (no tank mix)		8/30								
7	Super Tin*	Yes	6/25, 7/20, 8/13	1.1	g	1.8	fg	0.4	h	\$1,006	а
	Badge*		7/9, 8/3								
	Badge* (no tank mix)		8/30								
19	Super Tin + Topsin*	No	6/25, 7/20, 8/13	1.3	g	1.6	g	0.9	h	\$919	а-е
	Badge*		7/9, 8/3, 8/30							^	
9	Gem SC*	Yes	6/25, 8/2	2.2	fg	3.0	fg	1.4	h	\$797	d-h
	Super Tin*		7/9, 8/16								
	Badge*		7/23, 8/30								
10	Badge* (no tank mix) Priaxor*	Yes	8/30	2.0	f.a.	4.4	of or	2.0	a la	¢740	abi
10		res	6/25, 8/2	3.0	fg	4.1	efg	2.0	gh	\$740	ghi
	Super Tin* Badge*		7/9, 8/16 7/23								
	Badge* (no tank mix)		8/30								
11	Manzate* (6 applic)	No	6/25, 7/5, 7/20,	3.1	fg	4.8	efg	1.3	h	\$916	а-е
	Wanzato (o applio)	110	7/28, 8/9, 8/20	0.1	'9	4.0	cig	1.0		ΨΟΙΟ	u c
20	Gem SC*	No	6/25, 8/2	4.6	efg	4.7	efg	4.6	fgh	\$828	d-g
	Super Tin*		7/9, 8/16		J		Ū		J		ŭ
	Badge*		7/23, 8/30								
2	Proline + Preference*	Yes	6/25, 8/9	4.7	efg	5.0	efg	4.5	fgh	\$899	a-f
	Super Tin*		7/13								
	Badge*		7/26								
	Badge* (no tank mix)		8/30								
18	Super Tin*	No	6/25, 7/20, 8/13	5.4	efg	6.2	efg	4.7	fgh	\$863	b-g
	Badge*		7/9, 8/3, 8/30								
3	Minerva*	Yes	6/25, 8/9	5.9	efg	7.8	efg	4.1	fgh	\$929	a-d
	Super Tin*		7/13								
	Badge*		7/26 8/30								
5	Badge* (no tank mix) Topguard*	Yes	6/25, 8/9	7.1	efg	9.0	efg	5.2	e-h	\$852	h.a
5	Super Tin*	162	6/25, 6/9 7/13	'.1	eig	9.0	eig	5.2	e-11	φουΖ	b-g
	Badge*		7/13								
	Badge* (no tank mix)		8/30								
	Daago (no taint iiix)		5, 50								

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 gt/a)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Wackerle, Pinconning, MI - 2018

(Page 13 of 15)

No.	Treatment***	Tank	Applic Timing		% L	eafspc	ot Dam	age		Net \$	6/A
		Mix**		Av	g 2	17-	Sep	5-8	ер		
1	Inspire XT*	Yes	6/25, 8/9	8.3	def	9.0	efg	7.7	c-f	\$846	b-g
	Super Tin*		7/13								
	Badge*		7/26								
Ш	Badge* (no tank mix)		8/30								
4	Enable + Preference*	Yes	6/25, 8/9	9.9	cde	12.2	def	7.6	c-f	\$745	ghi
	Super Tin*		7/13								
	Badge*		7/26								
	Badge* (no tank mix)		8/30								
21	Priaxor*	No	6/25, 8/2	10.2	cde	13.6	de	6.8	d-g	\$682	hi
	Super Tin*		7/9, 8/16								
	Badge*		7/23, 8/30								
14	Minerva*	No	6/25, 8/9	14.5	bcd	18.8	cd	10.2	b-e	\$786	e-h
	Super Tin*		7/13								
	Badge*		7/26, 8/30								
15	Enable + Preference*	No	6/25, 8/9	16.5	b	24.2	bc	8.8	c-f	\$893	a-f
	Super Tin*		7/13								
	Badge*		7/26, 8/30								
13	Proline + Preference*	No	6/25, 8/9	17.2	b	20.4	bcd	14.0	b	\$765	f-i
	Super Tin*		7/13								
	Badge*		7/26, 8/30								
12	Inspire XT*	No	6/25, 8/9	18.1	b	25.2	bc	11.1	bcd	\$767	f- i
	Super Tin*		7/13								
	Badge*		7/26, 8/30								
16	Topguard*	No	6/25, 8/9	20.7	b	28.8	b	12.6	bc	\$797	d-h
	Super Tin*		7/13								
	Badge*		7/26, 8/30								
22	Manzate* (3 applic)	No	7/5, 7/28, 8/20	68.9	а	84.2	а	53.6	а	\$636	i
Av	erage			11.	19	14.	28	8.0	08	\$831	9
	D 5%			5.0		8.		4.4		117	

 Average
 11.19
 14.28
 8.08
 \$831.9

 LSD 5%
 5.67
 8.79
 4.42
 117.1

 CV %
 40.4
 49.1
 43.5
 11.1

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/a)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Wackerle, Pinconning, MI - 2018

(Page 14 of 15)

No.	Treatment***	Tank Mix**	Applic Timing	RWS	SA	RWS	т	T	/A	% \$	Suc	% (JP
8	Super Tin + Topsin* Badge* Badge* (no tank mix)	Yes	6/25, 7/18, 8/13 7/9, 8/3 8/30	5229	ab	196	а	26.7	ab	13.8	а	93.9	abc
7	Super Tin* Badge* Badge* (no tank mix)	Yes	6/25, 7/20, 8/13 7/9, 8/3 8/30	5350	а	198	а	27.0	ab	14.0	а	93.7	bcd
19	Super Tin + Topsin* Badge*	No	6/25, 7/20, 8/13 7/9, 8/3, 8/30	4782	а-е	196	а	24.3	b-e	13.9	а	93.6	bcd
9	Gem SC* Super Tin* Badge* Badge* (no tank mix)	Yes	6/25, 8/2 7/9, 8/16 7/23, 8/30 8/30	4516	c-f	192	abc	23.6	c-f	13.7	abc	93.5	cd
10	Priaxor* Super Tin* Badge* Badge* (no tank mix)	Yes	6/25, 8/2 7/9, 8/16 7/23 8/30	4296	d-g	198	а	21.7	efg	13.9	а	94.3	а
11	Manzate* (6 applic)	Yes	6/25, 7/5, 7/20, 7/28, 8/9, 8/20	4648	b-f	199	а	23.3	def	14.0	а	94.0	abc
20	Gem SC* Super Tin* Badge*	No	6/25, 8/2 7/9, 8/16 7/23, 8/30	4400	c-g	194	ab	22.7	def	13.7	abc	93.9	abc
2	Proline + Preference* Super Tin* Badge* Badge* (no tank mix)	Yes	6/25, 8/9 7/13 7/26 8/30	4857	a-d	198	а	24.5	а-е	14.1	а	93.6	bcd
18	Super Tin* Badge*	No	6/25, 7/20, 8/13 7/9, 8/3, 8/30	4461	c-f	194	ab	23.0	def	13.7	ab	93.8	bcd
3	Minerva* Super Tin* Badge* Badge* (no tank mix)	Yes	6/25, 8/9 7/13 7/26 8/30	4977	abc	195	ab	25.5	a-d	13.8	ab	93.8	bc
5	Topguard* Super Tin* Badge* Badge* (no tank mix)	Yes	6/25, 8/9 7/13 7/26 8/30	4618	b-f	193	ab	23.9	cde	13.7	abc	93.7	bcd

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/a)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Wackerle, Pinconning, MI - 2018

(Page 15 of 15)

No.	Treatment***	Tank Mix**	Applic Timing	RWS	SA	RWS	т	T/	Ά	% \$	Suc	% C	JP
1	Inspire XT* Super Tin*	Yes	6/25, 8/9 7/13	4576	b-f	194	ab	23.6	c-f	13.7	abc	93.9	abc
	Badge*		7/13										
	Badge* (no tank mix)		8/30										
4	Enable + Preference*	Yes	6/25, 8/9	4088	fg	194	ab	21.0	fg	13.7	ab	94.0	abc
	Super Tin*		7/13										
	Badge*		7/26										
ш	Badge* (no tank mix)		8/30							_			
21	Priaxor*	No	6/25, 8/2	3755	gh	191	abc	19.6	gh	13.7	abc	93.5	cd
	Super Tin*		7/9, 8/16										
14	Badge* Minerva*	No	7/23, 8/30 6/25, 8/9	4114	ofa	182		22.5	ef	13.1		93.5	od
14	Super Tin*	INO	6/25, 6/9 7/13	4114	efg	102	С	22.5	CI	13.1	С	93.5	cd
	Badge*		7/13										
15	Enable + Preference*	No	6/25, 8/9	4630	b-f	198	а	23.3	def	14.0	а	94.0	abc
	Super Tin*		7/13				-				-		
	Badge*		7/26, 8/30										
13	Proline + Preference*	No	6/25, 8/9	4071	fg	185	bc	21.9	efg	13.2	bc	93.7	bcd
	Super Tin*		7/13										
ш	Badge*		7/26, 8/30							_			
12	Inspire XT*	No	6/25, 8/9	4030	fg	185	bc	21.7	efg	13.2	bc	93.7	bcd
	Super Tin*		7/13										
16	Badge* Topguard*	No	7/26, 8/30 6/25, 8/9	4184	d-g	190	aba	22.0	efg	13.5	aba	93.7	bcd
10	Super Tin*	INO	6/25, 6/9 7/13	4104	u-g	190	abc	22.0	eig	13.5	abc	93.7	bca
	Badge*		7/13										
22			7/5, 7/28, 8/20	3200	h	173	d	18.4	h	12.5	d	93.3	d
=													
	erage	4439		192.		23.		13.		93.			
	D 5%	563.		8.7		2.3		0.		0.4			
CV	CV %)	3.6	;	8.	1	3.	.1	0.	4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Leafspot (Cercospora beticola and Alternaria alternata) pressure was high and consisted of equal amounts of Cercospora and Alternaria leafspot. Tank mixing fungicides with Manzate Max improved leafspot control significantly. Super Tin treatments provided the best leafspot control. The addition of Topsin to Super Tin improved disease control. Priaxor and Gem (strobilurin fungicides) provided better leafspot control than did triazoles.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Fungicides applied at recommended rates and included Masterlock at 6.4 fl oz/A.

^{**}Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/a)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Control of Cercospora and Alternaria Leafspot Utilizing Fungicides Approved for use in Canada Laker Agronomy Field, Fikton, ML - 2018

MICHIGAN SUGAR Laker Agronomy Field, Elkton, MI - 2018

(Page 1 of 4)

Trial Quality: Good Variety: C-G333NT Planted: May 2

Harvested: Oct 18

Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Clay Loam

% OM: 2.5 **pH:** 6.9 **CEC:** 14.6 **P:** above opt **K:** above opt

Mn: high B: low Added N: 135 lbs Prev Crop: Soybeans Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.1 inches Rainfall: 21.5 inches

Beets/100 ft: ~165

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

			Applic	% Lea	fspot					
No.	Treatment	Rate/A	Timing	Dam 24 Son		Net \$/A	RWSA	RWST	T/A	% SUC
2	Proline + NIS **	168.6 ml +	28-Jun	21-Sep		\$1,239 ab	7346 a	224 a	32.8 a	15.3 a
	(1 application)	0.125 %	20 0411	02.0	1.0 9.1	ψ1,200 ab	7040 u	22.7 4	02.0 u	10.0 4
	Manzate Pro Stick	189.3 ml +	16-Jul							
	+ Masterlock	189.3 ml	10-Aug							
	(3 applications) Proline + NIS +	168.6 ml +	5-Sep 25-Jul							
	Masterlock**	0.125 % +	20-Aug							
	(2 applications)	189.3 ml	20 7.09							
10	Manzate Pro Stick	907.2 g	28-Jun	41.5 gh	1.6 h	\$1,284 a	7273 a	223 a	32.5 a	15.2 a
	(1 application)									
	Manzate Pro Stick	189.3 ml	9-Jul							
	+ Masterlock (6 applications)		19-Jul							
	(o applications)		30-Jul 10-Aug							
			20-Aug							
			30-Aug							
8	Topsin**	591.5 ml	28-Jun	51.5 fg	3.0 fgh	\$1,261 ab	7146 ab	221 a	32.4 a	15.1 ab
	(1 application)									
	Manzate Pro Stick	189.3 ml	12-Jul							
	+ Masterlock		20-Aug							
	(3 applications)	504 5 ml ·	30-Aug							
	Topsin + Masterlock**	591.5 ml + 189.3 ml	6-Aug							
Ш	(1 application)									
1	Inspire XT**	207 ml	28-Jun	52.0 fg	2.2 fgh	\$1,195 abc	7017 abc	220 a	31.9 a	15.1 ab
	(1 application) Manzate Pro Stick	400.0	40.1.1							
	+ Masterlock	189.3 ml	16-Jul 10-Aug							
	(3 applications)		5-Sep							
	Inspire XT	207 ml +	25-Jul							
	+ Masterlock**	189.3 ml								
	(2 applications)		20-Aug							

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

NIS: Preference

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**}Treatments sprayed with Manzate Pro Stick @ 2 lb = 907.2 grams

^{*}All treatments were sprayed with a maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18.

Control of Cercospora and Alternaria Leafspot Utilizing Fungicides Approved for use in Canada

Laker Agronomy Field, Elkton, MI - 2018

(Page 2 of 4)

Treatment	Rate/A	Applic	Dam	fspot age	Net \$/A	RWSA	RWST	T/A	% SUC
	11010//1	Timing	21-Sep		ποι φιπ	i i i i i i i i i i i i i i i i i i i		.,, ,	70 000
Caramba**	508.7 ml	28-Jun	59.5 ef	3.6 e-h	\$1,179 a-d	6805 a-d	215 ab	31.7 a	14.8 abc
(1 application)									
Manzate Pro Stick	189.3 ml	12-Jul							
+ Masterlock									
(2 applications)									
Caramba + Masterlock**		6-Aug							
(2 applications)	+ 109.3 ml	30-Aug							
Minerva**	384.5 ml	28-Jun	60.0 ef	4.4 def	\$1,233 abc	7214 ab	222 a	32.5 a	15.2 a
(1 application)									
Manzate Pro Stick	189.3 ml	16-Jul							
		Ŭ							
Minerva + Masterlock**		25-Jul							
(2 applications)	ml	20-Aug							
Priaxor**	180.4 ml	28-Jun	65.0 def	7.5 c	\$1,191 abc	6923 abc	218 ab	31.8 a	14.9 abc
(1 application)									
Manzate Pro Stick	189.3 ml								
		Ŭ							
, , , ,	100.1.1								
Priaxor + Masterlock**		6-Aug							
(1 application)	ml								
Tilt**	201.1 ml	28-Jun	66.5 c-f	6.0 cd	\$1,206 abc	6804 a-d	215 ab	31.6 a	14.9 abc
(1 application)									
Manzate Pro Stick	189.3 ml								
		•							
, , ,	004.4								
Tilt + Masterlock**		6-Aug							
(1 application)	ml								
	(1 application) Manzate Pro Stick + Masterlock (2 applications) Caramba + Masterlock** (2 applications) Minerva** (1 application) Manzate Pro Stick + Masterlock (3 applications) Minerva + Masterlock** (2 applications) Priaxor** (1 application) Manzate Pro Stick + Masterlock (3 applications) Priaxor ** (1 application) Manzate Pro Stick + Masterlock (3 applications) Priaxor + Masterlock** (1 application) Tilt** (1 application) Manzate Pro Stick + Masterlock (3 applications) Tilt ** (1 application) Manzate Pro Stick + Masterlock (3 applications)	(1 application) Manzate Pro Stick 189.3 ml + Masterlock 508.7 ml (2 applications) + 189.3 ml Minerva** 384.5 ml (1 application) 189.3 ml Manzate Pro Stick 189.3 ml + Masterlock 384.5 ml (3 applications) 180.4 ml Priaxor** 180.4 ml (1 application) 189.3 ml Manzate Pro Stick 189.3 ml + Masterlock 180.4 ml (3 applications) 180.4 ml Priaxor + Masterlock** 180.4 ml (1 application) 180.4 ml + 189.3 ml + 189.3 ml + Masterlock 3 applications) Tilt + Masterlock** 201.1 ml (1 applications) 201.1 ml Tilt + Masterlock** 201.1 ml (1 application) + 189.3 ml	(1 application) 189.3 ml 12-Jul Manzate Pro Stick 189.3 ml 12-Jul + Masterlock 20-Aug (2 applications) 508.7 ml 6-Aug (2 applications) 30-Aug Minerva** 384.5 ml 28-Jun (1 application) 189.3 ml 16-Jul Manzate Pro Stick 189.3 ml 16-Jul + Masterlock 10-Aug 25-Jul (3 applications) 384.5 ml 25-Jul Hass 20-Aug 20-Aug 180.4 ml 28-Jun 28-Jun 1 application) 189.3 ml 12-Jul Manzate Pro Stick 189.3 ml 12-Jul + Masterlock 20-Aug 30-Aug Tilt** 201.1 ml 28-Jun (1 application) 180.4 ml 6-Aug + 189.3 ml 20-Aug 30-Aug Tilt** 201.1 ml 29-Aug (3 applications) 30-Aug 30-Aug Tilt + Masterlock** 201.1 ml 6-Aug + 189.3 ml 6-Aug 6-Aug + 189.3 ml	(1 application) 189.3 ml 12-Jul Manzate Pro Stick 189.3 ml 12-Jul + Masterlock 20-Aug (2 applications) 508.7 ml 6-Aug (2 applications) 30-Aug Minerva** 384.5 ml 28-Jun (1 application) 189.3 ml 16-Jul Hasterlock 10-Aug 10-Aug (3 applications) 384.5 ml 25-Jul Hassan 20-Aug 20-Aug (2 applications) 180.4 ml 28-Jun (1 application) 189.3 ml 12-Jul Manzate Pro Stick 189.3 ml 12-Jul Hasterlock 20-Aug 30-Aug Priaxor + Masterlock** 180.4 ml 6-Aug Hasterlock 20-Aug 66.5 c-f (1 application) 189.3 ml 12-Jul Hasterlock 20-Aug 66.5 c-f (1 applications) 189.3 ml 12-Jul Hasterlock 20-Aug 66.5 c-f (1 applications) 189.3 ml 12-Jul Hasterlock 20-Aug 66.5 c-f	(1 application) 189.3 ml 12-Jul Manzate Pro Stick 189.3 ml 12-Jul + Masterlock 20-Aug (2 applications) 508.7 ml 6-Aug (2 applications) 30-Aug Minerva** 384.5 ml 28-Jun (1 application) 189.3 ml 16-Jul Manzate Pro Stick 189.3 ml 25-Jul + Masterlock 189.3 ml 29-Aug (2 applications) 180.4 ml 28-Jun Priaxor** 189.3 ml 12-Jul (1 application) 189.3 ml 12-Jul 4 Masterlock 20-Aug (3 applications) 30-Aug Priaxor + Masterlock** 180.4 ml 6-Aug (1 application) 180.4 ml 6-Aug (1 application) 189.3 ml 12-Jul (2 applications) 20-Aug 66.5 c-f (3 applications) 189.3 ml 12-Jul (3 applications) 20-Aug 30-Aug Tilt + Masterlock** 201.1 ml 6-Aug (3 applications) 6-Aug 6-Aug (1 appl	(1 application) Image: content of the property o	(1 application) 189.3 ml 12-Jul Manzate Pro Stick + Masterlock (2 applications) 20-Aug 4.4 def \$1,233 abc 7214 ab Caramba + Masterlock** (2 applications) 384.5 ml 28-Jun 60.0 ef 4.4 def \$1,233 abc 7214 ab Minerva** (1 application) 189.3 ml 16-Jul 4.4 def \$1,233 abc 7214 ab Manzate Pro Stick + Masterlock (3 applications) 189.3 ml 16-Jul 4.4 def \$1,233 abc 7214 ab Priaxor** (2 applications) 189.3 ml 25-Jul 4.4 def \$1,233 abc 7214 ab Priaxor** (2 applications) 189.3 ml 25-Jul 4.4 def \$1,233 abc 7214 ab Priaxor** (2 applications) 189.3 ml 25-Jul 4.4 def \$1,233 abc 7214 ab Priaxor** (2 applications) 189.3 ml 12-Jul 4.4 def \$1,191 abc 6923 abc Priaxor** (3 applications) 189.3 ml 12-Jul 4.4 def \$1,191 abc 6923 abc Priaxor** (1 application) 189.3 ml 12-Jul 4.4 def 4.4 def 4.4	(1 application) 189.3 ml 12-Jul Manzate Pro Stick + Masterlock (2 applications) 20-Aug 20-Aug Caramba + Masterlock** (2 applications) 508.7 ml + 189.3 ml + 189.3 ml 30-Aug Minerva** (1 application) 384.5 ml + 16-Jul + 189.3 ml 16-Jul + 189.3 ml Minerva + Masterlock (3 applications) 384.5 ml + 189.3 ml 22-Jul + 189.3 ml Priaxor** (1 application) 189.3 ml 22-Jul + 189.3 ml Manzate Pro Stick + Masterlock (3 applications) 189.3 ml 12-Jul + 189.3 ml Priaxor + Masterlock (3 application) 180.4 ml + 189.3 ml 20-Aug + 189.3 ml Tilt** (1 application) 201.1 ml (1 application) 28-Jun + 189.3 ml Manzate Pro Stick + Masterlock (3 application) 180.4 ml + 189.3 ml Manzate Pro Stick + Masterlock (3 application) 189.3 ml Tilt + Masterlock (3 applications) 189.3 ml	(1 application)

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**}Treatments sprayed with Manzate Pro Stick @ 907.2 grams

^{*}All treatments were sprayed with a maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18.

Control of Cercospora and Alternaria Leafspot Utilizing Fungicides Approved for use in Canada

MICHIGAN SUGAR Laker Agronomy Field, Elkton, MI - 2018

(Page 3 of 4)

No	Tractment	Rate/A	Applic	% Lea	-	Net \$/A	RWSA	RWST	T/A	% SUC
No.	Treatment	Rate/A	Timing	Dam 21-Sep		Net 5/A	RWSA	KWSI	I/A	% SUC
16	Topsin**	591.5 ml	28-Jun	68.8 cde	4.0 d-g	\$1,199 abc	6813 a-d	218 ab	31.2 a	15.0 abc
	(1 application)									
	Manzate Pro Stick	189.3 ml	12-Jul							
	+ Masterlock		20-Aug							
	(3 applications)	591.5 ml +	30-Aug							
ш	Topsin + Masterlock (1 application)	189.3 ml	6-Aug							
15	Inspire (not XT) + Topsin	207 ml + 591.5 ml	28-Jun	71.3 cde	5.8 cde	\$1,158 a-d	6823 a-d	216 ab	31.6 a	14.8 abc
	(1 application)	189.3 ml	40 1.1							
	Manzate Pro Stick + Masterlock	109.5 1111	16-Jul 10-Aug							
	(3 applications)		5-Sep							
	Inspire (not XT) + Topsin	207 ml +	25-Jul							
	Masterlock	591.5 ml +	20-Aug							
	(2 applications)	189.3 ml	J							
11	Badge	950 ml	28-Jun	75.5 b-e	8.0 c	\$1,120 bcd	6465 bcd	213 ab	30.5 a	14.7 abc
	(1 application)									
	Badge + Masterlock	950 ml + 189.3 ml	9-Jul							
	(5 applications)	103.5 1111	19-Jul							
			30-Jul 10-Aug							
			20-Aug							
	Manzate Pro Stick	189.3 ml	30-Aug							
	+ Masterlock									
	(1 application)									
9	Inspire (not XT)**	207 ml	28-Jun	75.5 b-e	3.8 d-h	\$1,206 abc	7042 abc	220 a	32.1 a	15.0 abc
	(1 application)									
	Manzate Pro Stick	189.3 ml	16-Jul							
	+ Masterlock		10-Aug							
	(3 applications)	207 ml i	5-Sep							
	Inspire (not XT) +	207 ml + 189.3 ml	25-Jul							
	Masterlock** (2 applications)	100.0 1111	20-Aug							
	(2 applications)									

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**}Treatments sprayed with Manzate Pro Stick @ 907.2 grams

^{*}All treatments were sprayed with a maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18.

Control of Cercospora and Alternaria Leafspot Utilizing Fungicides Approved for use in Canada Laker Agronomy Field, Elkton, MI - 2018 (Page 4 of 4)

No.	Treatment	Rate/A	Applic	% Lea		Net \$/A	RWSA	RWST	T/A	% SUC
	Trodunion	11010771	Timing		7-Sep	πουφητ	1111071		.,, (70 000
7	Headline SC** (1 application)	363.8 ml	28-Jun	78.0 a-d	8.0 c	\$1,122 bcd	6613 a-d	214 ab	30.9 a	14.8 abc
	Mazate Pro Stick + Masterlock	189.3 ml	12-Jul 20-Aug							
Ш	(3 applications)		30-Aug							
	Headline SC + Masterlock** (1 application)	236.8 ml + 189.3 ml	6-Aug							
13	Cueva (1 application)	5.7 L	28-Jun	82.5 abc	12.9 b	\$1,043 d	6126 d	205 b	29.9 a	14.3 с
	Cueva + Masterlock (5 applications)	5.7 L + 189.3 ml	9-Jul 19-Jul 30-Jul 10-Aug 20-Aug							
	Manzate Pro Stick + Masterlock (1 application)	5.7 L + 189.3 ml	30-Aug							
12	Cueva (1 application)	2.8 L	28-Jun	88.5 ab	12.7 b	\$1,090 cd	6326 cd	210 ab	30.0 a	14.4 bc
	Cueva + Masterlock (5 applications)	2.8 L + 189.3 ml	9-Jul 19-Jul 30-Jul 10-Aug 20-Aug							
	Manzate Pro Stick + Masterlock (1 application)	2.8 L + 189.3 ml	30-Aug							
14	14 Untreated			93.0 a	21.3 a	\$875 e	4712 e	191 c	24.7 b	13.4 d
Ave	Average			66.31	6.67	\$1,162.7	6715.5	215.3	31.12	14.80
	LSD 5%			14.52	2.09	124.2	668.6	11.6	2.68	0.60
CV				17.3	24.8	8.4	7.9	4.3	6.8	3.2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Cercospora (*Cercospora beticola*) and Alternaria (*Alternaria alternata*) leafspot pressure was very high. The Untreated plots lost over 6 tons/acre and 2 points of sugar. None of the treatments provided adequate disease control. One or two more applications should have been applied. All of the main fungicides (Inspire XT, Topsin, etc,) were tank mixed with Manzate Prostick. Manzate Prostick + Masterlock (7 applic) gave better leafspot control than most treatments.

^{**}Treatments sprayed with Manzate Pro Stick @ 907.2 grams

^{*}All treatments were sprayed with a maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18.

^{*}Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of Cercospora beticola and Alternaria Alternata Leafspot in Sugarbeets with Several Fungicide Programs

Laker Agronomy Field, Elkton, MI - 2018

(Page 1 of 4)

Trial Quality: Good Variety: C-G333NT Planted: May 2 Harvested: Oct 18

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Soil Info: Clay Loam % OM: 2.5 pH: 6.9 CEC: 14.6 P: above opt K: above opt

Mn: high B: low Added N: 135 lbs. Prev Crop: Wheat Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.1 inches Rainfall: 21.6 inches Beets/100 ft: ~185

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

			Applic	% Leafs										
No.	Treatment***	Rate / A	Timing	Dama 21-S	age	Net \$/A	RW	SA	RW	ST	T/A	`	% SU	С
3	Manzate* (1 application)	1.6 qt	28-Jun	2.0	е	\$1,089 a	7183	а	233	cd	30.8	а	15.7	bc
	Super Tin + Manzate* (2 applications) Inspire XT + Manzate* (1 application)	8 fl oz + 1.6 qt 7 fl oz + 1.6 qt	3-Jul 4-Aug 17-Jul											
	Proline + NIS** + Manzate* (1 application)	5.7 fl oz + 1.6 qt	18-Aug											
Ш	Badge* (1 application)	2 pt	30-Aug											
1	Manzate* (1 application)	1.6 qt	28-Jun	4.5	е	\$929 de	6251	cd	236	bcd	26.5	bc	15.9	bc
	Inspire XT + Manzate* (1 application)	7 fl oz + 1.6 qt	3-Jul											
	Super Tin + Manzate* (2 applications)	8 fl oz + 1.6 qt	20-Jul 23-Aug											
	Proline + NIS** + Manzate* (1 application)	5.7 fl oz + 1.6 qt	4-Aug											
	Badge* (1 application)	2 pt	5-Sep											
4	Super Tin + Topsin + Manzate* (1 application)	8 fl oz + 20 fl oz + 1.6 qt	3-Jul	5.6	de	\$1,001 bcd	6649	bc	238	bc	28.0	b	16.0	bc
	Inspire XT + Manzate* (1 application)	7 fl oz + 1.6 qt	17-Jul											
	Super Tin + Manzate* (1 application)	8 fl oz + 1.6 qt	4-Aug											
	Proline + NIS** + Manzate* (1 application)	5.7 fl oz + 1.6 qt	18-Aug											
	Badge* (1 application)	2 pt	5-Sep											

^{*}Treatments sprayed with Masterlock (6.4 fl oz)

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**}NIS: Preference (0.125%)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18. Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Control of Cercospora beticola and Alternaria Alternata Leafspot in Sugarbeets with Several Fungicide Programs Laker Agronomy Field, Elkton, MI - 2018 (Page 2 of 4)

Applic Leafspot Rate / A % SUC No. Treatment*** Net \$/A **RWSA RWST** T/A **Timing Damage** 21-Sep 7 Manzate* 1.6 qt 28-Jun 6.3 de \$924 de 6397 240 bc 26.7 bc 16.1 abc (1 application) 8 fl oz + Priaxor + Manzate* 3-Jul 1.6 qt 31-Jul (2 applications) 8 fl oz + 17-Jul Super Tin + Manzate* 1.6 qt (1 application) 7 fl oz + Inspire XT + Manzate* 14-Aug 1.6 qt (1 application) Badge* 2 pt 30-Aug (1 application) Inspire XT + Manzate* 7 fl oz + 3-Jul 6.3 \$964 242 16.2 de b-e 6377 cd abc 26.4 bc ab 1.6 qt (1 application) 8 fl oz + 20-Jul Super Tin + Manzate* 1.6 qt 23-Aug (2 applications) Proline + NIS** + Manzate* 5.7 fl oz 4-Aug + 1.6 qt (1 application) 2 pt Badge* 5-Sep (1 application) 2 pt + 1.6 10 Echo + Manzate* 3-Jul 7.5 de \$957 cde 6441 cd 236 bcd 27.3 bc 15.8 qt (1 application) 8 fl oz + 17-Jul Priaxor + Manzate* 1.6 qt

Badge*

(1 application)

(1 application) Inspire XT + Manzate*

(1 application)

(1 application)

Super Tin + Topsin

31-Jul

14-Aug

30-Aug

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Bold: Results are not statistically different from top-ranking treatment in each column.

8 fl oz +

20 fl oz

7 fl oz +

1.6 qt

2 pt

^{*}Treatments sprayed with Masterlock (6.4 fl oz)

^{**}NIS: Preference (0.125%)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18. Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Control of *Cercospora beticola* and *Alternaria Alternata*Leafspot in Sugarbeets with Several Fungicide Programs Laker Agronomy Field, Elkton, MI - 2018 (Page 3 of 4)

No.	Treatment***	Rate / A	Applic	% Leafspot	Net \$/A	RWSA	RWST	T/A	% SUC
			Timing	Damage 21-Sep					
9	Manzate*	1.6 qt	28-Jun	8.5 de	\$1,038 ab	6983 ab	252 a	27.7 b	16.8 a
	(1 application)								
	Echo + Manzate*	2 pt + 1.6	3-Jul						
	(1 application)	qt							
	Priaxor + Manzate*	8 fl oz +	17-Jul						
	(1 application)	1.6 qt							
	Super Tin + Topsin	8 fl oz +	31-Jul						
	(1 application)	20 fl oz							
	Inspire XT + Manzate*	7 fl oz +	14-Aug						
	(1 application)	1.6 qt							
	Badge*	2 pt	30-Aug						
Ш	(1 application)								
5	Manzate*	1.6 qt	28-Jun	10.5 cde	\$964 b-e	6608 bc	242 abc	27.3 bc	16.3 ab
	(1 application)								
	Priaxor + Manzate*	8 fl oz +	3-Jul						
	(1 application)	1.6 qt							
	Inspire XT + Manzate*	7 fl oz +	17-Jul						
	(1 application)	1.6 qt							
	Manzate + Badge*	1.6 qt + 2	4-Aug						
	(1 application)	pt							
	Proline + NIS** + Manzate*	5.7 fl oz +	14-Aug						
	(1 application)	1.6 qt							
	Badge*	2 pt	30-Aug						
4.4	(1 application)	4.0.4	00.1	10.0	* * * * * * * * * *	0540	007	07.0	45.0
11	Manzate	1.6 qt	28-Jun 3-Jul	13.9 cd	\$1,013 bc	6549 bcd	237 bc	27.6 bc	15.9 bc
	(4 applications)		3-Jul 13-Jul						
			23-Jul						
	Manzate + Badge	1.6 qt + 2	2-Aug						
	(2 applications)	pt							
	Badge*	2 pt	13-Aug						
	(1 application)								
	Badge	2 pt	23-Aug						
	(2 application)		4-Sep						

^{*}Treatments sprayed with Masterlock (6.4 fl oz)

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**}NIS: Preference (0.125%)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18. Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Control of *Cercospora beticola* and *Alternaria Alternata*Leafspot in Sugarbeets with Several Fungicide Programs Laker Agronomy Field, Elkton, MI - 2018 (Page 4 of 4)

No.	Treatment***	Rate / A	Applic Timing	% Leafspot Damage 21-Sep	Net \$/A	RWSA	RWST	T/A	% SUC
8	Priaxor + Manzate*	8 fl oz + 1.6 qt	3-Jul 31-Jul	18.1 c	\$913 e	6270 cd	246 ab	25.5 c	16.4 ab
	(2 applications) Super Tin + Manzate* (1 application)	8 fl oz + 1.6 qt	17-Jul						
	Inspire XT + Manzate* (1 application)	7 fl oz + 1.6 qt	14-Aug 30-Aug						
	Badge* (1 application)	2 pt	30-Aug						
6	Priaxor + Manzate* (1 application)	8 fl oz + 1.6 qt	3-Jul	32.5 b	\$892 e	6118 d	236 bcd	25.9 bc	15.8 bc
	Inspire XT + Manzate* 7 fl oz + 17- (1 application) 1.6 qt	17-Jul							
	Manzate + Badge* (1 application)	1.6 qt + 2 pt	4-Aug						
	Proline + NIS** + Manzate* (1 application)	5.7 fl oz + 1.6 qt	14-Aug						
	Badge* (1 application)	2 pt	30-Aug						
12				94.4 a	758 f	4523 e	225 d	20.1 d	15.3 c
Ave	erage		17.50	\$953.5	6362.5	238.6	26.65	16.02	
	0.5%		7.88	71.1	424.2	10.9	1.80	0.67	
CV	%		31.3	5.2	4.6	3.2	4.7	2.9	

^{*}Treatments sprayed with Masterlock (6.4 fl oz)

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Leafspot (*Cercospora beticola* and *Alternaria alternata*) pressure was very high and consisted of 50% Cercospora and 50% Alternaria leafspot. Starting early (Jun 28) followed by a Triazole + EBDC / Super Tin + EBDC program gave the best overall results. Priaxor based treatments were slightly less effective than triazole based treatments. Starting early and including Super Tin in the program improved results.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**}**NIS**: Preference (0.125%)

^{***}All treatments were sprayed with a maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 9/18.

Evaluate Protectant Fungicides for Control of Cercospora beticola and Alternaria alternata leafspot in Sugarbeets

Laker Agronomy Field, Elkton, MI - 2018

(Page 1 of 5)

Trial Quality: Good Variety: C-G333NT Planted: May 2 Harvested: Oct 18

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Soil Info: Clay Loam % OM: 2.7 pH: 6.3 CEC: 16.3 P: above opt K: above opt

Mn: high B: low Added N: 135 lbs. Prev Crop: Soybeans Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.1 inches Rainfall: 21.6 inches Beets/100 ft: ~165

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

	pilcation. 3D 3320 tracto	1	ı or opra,	%	<u> </u>	%		о ро., до	900	1			1	П	
			Applic												
No.	Treatment	Rate/A	Timing	Dama				Net \$	/A	RWSA	RWS	T	T/A	% S	UC
			9	21-S		7-S									
7	Echo*	3 pt	28-Jun	4.5	f	0.9	i	\$1.422	ab	8549 ab	234 a	bc	36.5 a	15.7	abc
	(5 applications)	'	13-Jul				•	,							
	(27-Jul												
			10-Aug												
			28-Aug												
21	Super Tin + Topsin	8 fl oz +	28-Jun	5.0	f	0.5	j	\$1,438	а	8679 a	242	а	35.9 abo	16.2	а
	Manzate*	20 fl oz	23-Jul												
	(2 applications)	+ 1.6 fl													
	Manzate +	1.6 qt +	13-Jul												
	Na Bicarb*	5 lb	7-Aug												
	(3 applications)		18-Aug												
	Badge*	2 pt	30-Aug												
ш	(1 application)														
9	Super Tin + Topsin +	8 fl oz +	28-Jun	5.3	f	0.7	j	\$1,346	bc	8137 bc	237	ab	34.3 bcc	16.0	abc
	Manzate*	20 fl oz	23-Jul												
	(2 applications)	+ 1.6 qt	40 1 1												
	Manzate*	1.6 qt	13-Jul												
	(3 applications)		7-Aug												
	Badge*	O nt	18-Aug												
	(1 application)	2 pt	30-Aug												
12	Echo + Manzate*	2 pt +	28-Jun	8.1	f	1.5	i	\$1,388	ah	8411 ab	238	ab	35.3 a-d	16.0	ah
12	(2 applications)	1.6 qt	23-Jul	0.1	Ċ	110	J	Ψ1,000	ab	OTTI GD		ub	00.0 a a	10.0	ab
	Manzate*	1.6 qt	13-Jul												
	(2 applications)		7-Aug												
	Inspire XT + Manzate*	7 fl oz +	18-Aug												
	(1 application)	1.6 qt	Ü												
	Badge*	2 pt	30-Aug												
	(1 application)														
8	Super Tin + Manzate*	8 fl oz +	28-Jun	8.1	f	0.4	j	\$1,440	а	8561 ab	238	ab	36.0 ab	15.9	abc
	(2 applications)	1.6 qt	23-Jul												
	Manzate*	1.6 qt	13-Jul												
	(3 applications)		7-Aug												
		0 1	18-Aug												
	Badge*	2 pt	30-Aug												
<u> </u>	(1 application)	4 a ml a al . (C. 4	fl\												

^{*}Treatments sprayed with Masterlock (6.4 fl oz)

Na Bicarb: Sodium Bicarbonate

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Protectant Fungicides for Control of Cercospora beticola and Alternaria alternata leafspot in Sugarbeets MICHIGAN SUGAR Laker Agronomy Field, Elkton, MI - 2018 (Page 2 of 5)

				0/		1/									
No.	Treatment	Rate/A	Applic Timing	% Leafspo Damage 21-Sep	t Leaf		Net \$		RWSA		VST	T	/A	% SU	
20	Super Tin + Manzate*	8 fl oz +	28-Jun	9.5 f	0.4	j	\$1,356	abc	8110 bc	236	ab	34.3	bcd	15.8	abc
	(2 applications)	1.6 qt	23-Jul												
	Manzate +	1.6 qt +	13-Jul												
	Sodium Bicarbonate*	5 lb	7-Aug												
	(3 applications)	0 1	18-Aug												
	Badge*	2 pt	30-Aug												
6	(1 application) Echo*	2 pt	28-Jun	16.0 f	3.9	hij	\$1,402	ab	8294 ab	222	2-d	25.7	ahc	15.6	2-d
	(5 applications)	2 ρι	13-Jul	10.0 1	3.9	1111	φ1,402	ab	0294 ab	232	a-u	33.7	auc	15.0	a-u
	(o applications)		27-Jul												
			10-Aug												
			28-Aug												
4	Manzate + Badge*	1.6 qt +	28-Jun	28.6 e	4.6	g-j	\$1,229	de	7692 cd	231	bcd	33.4	de	15.4	b-e
	(6 applications)	2 pt	9-Jul												
			19-Jul												
			30-Jul												
			10-Aug												
	D +	0 1	23-Aug												
	Badge* (1 application)	2 pt	30-Aug							ı					
11	Priaxor + Manzate*	8 fl oz +	28-Jun	34.9 e	2.2	ij	\$1,171	ef	7421 de	233	a-d	31.9	ef	15.6	a-d
	(2 applications)	1.6 qt	23-Jul	04.0		٠,	Ψί,ίνι	Ci	17421 00		u u	01.5	Ci	10.0	u u
	Manzate*	1.6 qt	13-Jul												
	(2 applications)		7-Aug												
	Inspire XT + Manzate*	7 fl oz +	18-Aug												
	(1 application)	1.6 qt	J												
	Badge*	2 pt	30-Aug												
	(1 application)				_										
1	Manzate*	1.6 qt	28-Jun	38.0 e	2.1	ij	\$1,233	de	7381 de	231	bcd	31.9	ef	15.6	a-d
	(6 applications)		9-Jul												
			19-Jul												
			30-Jul												
			10-Aug												
			23-Aug							1					
	Badge*	2 pt	30-Aug							1					
10	(1 application) Inspire XT + Manzate*	7 fl oz +	28-Jun	53.1 d	3.0	ij	\$1,278	cd	7767 cd	229	h-o	34.1	hed	15.4	cdo
10	(1 application)	7 11 02 + 1.6 qt	20-Jun	33.1 U	3.0	IJ	ψ1,276	cu	1101 00	220	D-E	54.1	bcu	13.4	cue
	Manzate*	1.6 qt	17-Jul												
	(2 applications)	4	10-Aug												
	Super Tin + Manzate*	8 fl oz +	27-Jul												
	(1 application)	1.6 qt													
	Proline + Preference	5.7 fl oz	22-Aug												
	+ Manzate	+0.125	9												
	(1 application)	% + 1.6													

^{*}Treatments sprayed with Masterlock (6.4 fl oz)

Na Bicarb: Sodium Bicarbonate

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Protectant Fungicides for Control of *Cercospora* beticola and *Alternaria alternata* leafspot in Sugarbeets

Laker Agronomy Field, Elkton, MI - 2018 (Page 3 of 5)

No.	Treatment	Rate /A		% Leafspot	-	Net \$/A	RWSA	RWST	T/A	%
NO.	rreatment	Nate /A	Timing	Damage 21-Sep	Damage 7-Sep	Net WA	KWOA	NW31	1//	SUC
22	Priaxor + Manzate + Na Bicarb* (2 applications)	8 fl oz + 1.6 qt + 5 lbs	28-Jun 23-Jul	68.8 c	3.0 ij	\$1,234 de	7814 cd	231 bcd	33.8 cde	15.5 bcd
	Manzate + Na Bicarb* (2 applications)	1.6 qt + 5 lb	13-Jul 7-Aug							
Ш	Inspire + Manzate + Na Bicarb* (1 application)	7 fl oz + 1.6 qt + 5 lb	18-Aug							
Ш	Badge* (1 application)	2 pt	30-Aug							
5	Cuprofix* (6 applications)	2 lb	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug	71.9 c	9.4 e-h	\$1,145 fg	6984 ef	223 def	31.3 f	15.0 def
	Badge* (1 application)	2 pt	30-Aug							
3	Badge* (6 applications)	3 pt	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug	73.8 c	7.9 f-i	\$1,141 fg	7014 ef	224 c-f	31.3 f	15.1 def
	Badge* (1 application)	2 pt	30-Aug							
19	Inspire XT + Manzate + Na Bicarb* (1 application)	7 fl oz + 1.6 qt + 5 lb	28-Jun	74.4 c	6.1 g-j	\$1,230 de	7469 de	223 def	33.6 de	15.0 def
	Manzate + Na Bicarb* (3 applications)	1.6 qt + 5 lb	17-Jul 10-Aug 23-Aug							
	Super Tin + Manzate* (1 application) Badge*	8 fl oz + 1.6 qt	27-Jul 30-Aug							
	(1 application)	·								
2	Badge* (7 applications)	2 pt	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug 30-Aug	75.0 c	10.0 d-g	\$1,084 f-i	16637 fgh	220 ef	30.2 fg	14.8 efg

^{*}Treatments sprayed with Masterlock (6.4 fl oz)

Na Bicarb: Sodium Bicarbonate

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Protectant Fungicides for Control of *Cercospora* beticola and *Alternaria alternata* leafspot in Sugarbeets

Laker Agronomy Field, Elkton, MI - 2018 (Page 4 of 5)

No.	Treatment	Rate /A		Damage		Net \$/A	RWSA	RWST	T/A	% SUC
18	Badge + Na Bicarb + NIS* (6 applications)	2 pt + 5 lb + 0.125%	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug	21-Sep 80.6 bc	7-Sep 12.5 c-f	\$1,096 f-i	6776 fg	223 def	30.4 fg	15.0 def
17	Badge* (1 application) Manzate + Na Bicarb + NIS* (6 applications)	2 pt 1.6 qt + 5 lb + 0.125%	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug	89.4 ab	7.5 f-i	\$1,105 fgh	6713 fgh	219 ef	30.6 fg	14.8 efg
24	Badge* (1 application) Na Bicarb + Sun Spray (6 applications) Badge*	2 pt 5 lb + 1 qt 2 pt	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug 30-Aug	91.3 ab	12.4 c-f	\$987 j	6242 hij	216 fg	28.9 gh	14.7 fg
16	(1 application) Ammonium Bicarbonate + NIS* (6 applications) Badge* (1 application)	5 lb + 0.125%	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug 30-Aug	92.5 ab	14.5 b-e	\$1,105 fgh	6477 ghi	215 fg	30.1 fg	14.7 fg
13	Na Bicarb + NIS* (6 applications) Badge* (1 application)	2.5 lb + 0.125%	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug 30-Aug	93.8 ab	12.9 c-f	\$1,078 ghi	6326 g-j	217 f	29.1 gh	14.7 fg

^{*}Treatments sprayed with Masterlock (6.4 fl oz)

Na Bicard: Sodium Bicarbonate

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Protectant Fungicides for Control of *Cercospora*beticola and *Alternaria alternata* leafspot in Sugarbeets
Laker Agronomy Field, Elkton, MI - 2018 (Page 5 of 5)

No.	Treatment	Rate /A	Timing	% Leafspot Damage 21-Sep	Damage 7-Sep	Net \$/A	RWSA	RWST	T/A	% SUC
23	Na Bicarb + Sun Spray (6 applications)	5 lb + 1 qt	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug	95.0 a	15.6 bcd	\$1,013 ij	5916 jk	217 fg	27.3 hi	14.6 fg
	Badge* (1 application)	2 pt	30-Aug							
15	Milstop + NIS* (6 applications)	5 lb + 0.125%	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug	97.5 a	16.6 bc	\$665 I	5610 k	217 f	25.8 i	14.7 fg
	Badge* (1 application)	2 pt	30-Aug							
14	Sodium Bicarbonate + NIS* (6 applications)	5 lb + 0.125%	28-Jun 9-Jul 19-Jul 30-Jul 10-Aug 23-Aug	98.8 a	18.9 b	\$1,038 hij	6058 ijk	216 fg	28.0 h	14.8 efg
	Badge* (1 application)	2 pt	30-Aug							
25	Untreated			100.0 a	37.5 a	\$786 k	4445 I	207 g	21.5 j	14.2 g
Average LSD 5%				56.55 11.84	8.19 4.99	\$1,176.4 77.1	7179.3 436.0	226.0 8.7	31.64 1.84	15.24 0.53
CV %				14.9	43.2	4.7	4.3	2.7	4.1	2.5

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Na Bicarb: Sodium Bicarbonate

Comments: The leafspot infection (*Alternaria alternata* and *Cercospora beticola*) was very high. Echo at 3 pt/A and Super Tin + Topsin treatments provided the best leafspot control. Triazole and strobilurin treatments were less effective. Most treatments were overwhelmed by the intense disease pressure and more fungicide applications would have been needed to achieve acceptable control. Bicarbonates alone gave some early protection.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Treatments sprayed with Masterlock (6.4 fl oz)

^{**}All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Control of Cercospora Leafspot with Fungicides Using Six Different Spray Tips

Wark, Akron, MI - 2018

(Page 1 of 2)

Trial Quality: Good Variety: B-149N Planted: May 8 Harvested: Oct 5

Harvested: Oct 5
Plots: 6 rows X 38 ft, 4 reps
Row Spacing: 22 inches

Soil Info: Loam

% OM: 2.1 pH: 7.8 CEC: 15.9P: below opt K: above optMn: high B: med

Added N: 135 lbs.

Previous Crop: Soybeans

Rhizoc Level: Low Cerc. Control: See trts.

Problems: Slope

Seeding Rate: 4.1 inches Rainfall: 17.2 inches

Beets/100 ft: ~189

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment	Droplet			afspot nage		Net \$	/A	RWS	SA	RW	ST	T/2	A	% SUC	% C	JP
		Size	20-S	ер	31-A	lug											
6	TTJ60 11002*	Medium	43.1	е	4.6	d	\$1,318	ab	6776	ab	198	ab	34.2	ab	13.9	95.1	ab
4	HYPRO 3D 02*	Fine	46.3	de	4.0	d	\$1,298	ab	6678	ab	194	ab	34.5	ab	13.7	95.0	ab
2	AIXR 11002*	Medium	58.1	d	5.5	d	\$1,301	ab	6692	ab	196	ab	34.1	ab	13.7	95.2	ab
3	TDAT 02*	Medium	71.9	С	11.1	cd	\$1,088	cd	5664	С	194	ab	29.3	С	13.7	95.0	ab
5	TTI 11002*	Xtra Coarse	79.4	bc	8.8	cd	\$1,188	bc	6149	bc	194	ab	31.8	bc	13.6	95.1	ab
1	TeeJet 8002XR*	V. Fine	91.3	ab	9.8	cd	\$1,116	С	5800	С	199	ab	29.1	С	13.8	95.5	ab
10	HYPRO 3D 02**	Fine	91.6	ab	23.9	bc	\$1,421	а	7055	а	198	ab	35.6	а	13.8	95.2	ab
7	TeeJet 8002XR**	V. Fine	93.8	а	17.3	bc	\$1,351	ab	6720	ab	193	ab	34.8	ab	13.6	95.5	а
9	TDAT 02**	Medium	93.8	а	22.5	bc	\$1,384	а	6876	ab	192	ab	35.7	а	13.5	95.4	ab
12	TTJ60 11002**	Medium	95.0	а	18.3	bc	\$1,465	а	7268	а	206	а	35.1	а	14.3	95.3	ab
8	AIXR 11002**	Medium	95.0	а	26.5	b	\$1,373	а	6826	ab	193	ab	35.4	а	13.5	95.3	ab
11	TTI 11002**	Xtra Coarse	97.5	а	23.8	bc	\$1,360	а	6760	ab	191	b	35.5	а	13.5	95.0	b
13	Untreated		100.0	а	43.8	а	\$777	d	3754	d	164	С	22.8	С	11.9	93.5	С
^			04.0	7	40.4	00	¢4.00	1 -	C20(2.0	400	2.0	22.4	22	40.50	05 (00
AV	erage		81.2	21	16.8	89	\$1,264	1.5	6386	5.0	193	3.2	32.	92	13.58	95.0	08
LS	D 5%		12.7	76	13.4	45	150.0	6	727	.2	12	.7	2.7	6	n.s.	0.4	8
CV	%		10.	9	55.	.1	8.2		7.9	9	4.	6	5.8	8	3.7	0.4	4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

- A July 10th: Inspire XT @ 7 fl oz. + Manzate @ 1.6 qt. + Masterlock @ 6.4 fl oz.
- B August 2nd: Super Tin @ 8 fl oz. + Manzate @ 1.6 qt. + Masterlock @ 6.4 fl oz.
- C August 16th: Manzate @ 1.6 qt. + Masterlock @ 6.4 fl oz.
- D August 30th: Proline @ 5.7 fl oz. + Manzate @ 1.6 qt. + Masterlock @ 6.4 fl oz.

ABCD - July 10th, July 26th, August 10th, August 30th: Manzate @ 1.6 qt. + Masterlock @ 6.4 fl oz.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Treatments 1-6 received the same spray program.

^{**}Treatments 7-12 received the same spray program.

Control of Leafspot Diseases in Sugarbeets With Fungicides Using Different Spray Tips

Wark, Akron, MI - 2018

(Page 2 of 2)

No.	Treatment	Nozzle	Droplet Size	% Lea Dam		Net \$/A	cre	RWS	A	RWS	ST
6	Triazole / S. Tin / Manz.	TTJ60 11002	Medium	24	h	\$1,318	ab	6776	ab	198	ab
4	Triazole / S. Tin / Manz.	HYPRO 3D 02	Fine	25	h	\$1,298	ab	6678	ab	194	ab
2	Triazole / S. Tin / Manz.	AIXR 11002	Medium	32	g	\$1,301	ab	6692	ab	196	ab
3	Triazole / S. Tin / Manz.	TDAT 02	Medium	39	f	\$1,118	С	5813	С	194	ab
5	Triazole / S. Tin / Manz.	TTI 11002	Coarse	42	ef	\$1,188	bc	6149	bc	194	ab
1	Triazole / S. Tin / Manz.	Tee Jet 8002 XR	Very Fine	46	de	\$1,116	С	5800	С	199	ab
7	Manzate Max	Tee Jet 8002 XR	Very Fine	52	cd	\$1,351	ab	6720	ab	193	ab
10	Manzate Max	HYPRO 3D 02	Fine	54	bc	\$1,421	а	7055	а	198	ab
12	Manzate Max	TTJ60 11002	Medium	55	bc	\$1,465	а	7268	а	206	а
9	Manzate Max	TDAT 02	Medium	55	bc	\$1,384	а	6876	ab	192	ab
11	Manzate Max	TTI 11002	Coarse	58	bc	\$1,360	а	6760	ab	191	b
8	Manzate Max	AIXR 11002	Medium	59	b	\$1,373	а	6826	ab	193	ab
13	Untreated Check			74	С	\$777	С	3754	С	164	С
Avera	age		47	.4	\$1,266	.8	6397.	5	193	.2	
LSD			6.	0	\$148.	6	717.9	9	12.	7	
CV%)			8.	8	8.1		7.8		4.6	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Fungicides were applied at recommended rates and Masterlock was included in all treatments Each fungicide program was applied 4 times

Comments: Six different nozzle tips were utilized to apply fungicides for Cercospora (*Cercospora beticola*) and Alternaria (*Alternaria alternata*) leafspot control. Two fungicide programs were evaluated: 1: Triazole / Super Tin / Manzate program and 2: Manzate alone program. The leafspot pressure was high. The applications were started late to stress the trial. The Triazole / Super Tin program provided better leafspot control than the straight Manzate program. With respect to nozzle tips, with the Triazole / Super Tin (Trts 1-6), the HYPRO 3D (fine droplet size) and the TT J60 (medium droplet size) provided the best results. In the straight Manzate (Trts 7-12) Tee Jet XR (very fine) gave the best results followed by the HYPRO and TT J60 tips. Coarse nozzle tips were less effictive. Leafspot % damage is an average of 2 ratings.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora*beticola and *Alternaria alternata* Leafspot Control in Sugarbeets Average of 2 Locations - 2018 (Page 1 of 15)

Trial Quality: Good Soil and Other Info: See individual trials Rhizoc Level: Low

Variety: B-149N Cerc Control: See individual trials

Plots: 6 rows X 38 ft, 3 repsProblems: NoneRow Spacing: 22 inchesSeeding Rate: 4.1 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

Beets/100 ft: ~220

No.	Treatment	Sticker	% Leafs Dama	pot age	Net \$	/A	RW	SA	RWS	ST	T/	Ά.	% S	UC	% CJP
			Av	g											
48	Super Tin	Reguard	0.5	S	\$1,419	a-h	8057	a-f	219	a-h	37.1	a-f	15.0	a-h	95.7
Ш		Diligence													
46	Super Tin	Masterlock	1.0	rs	\$1,467	abc	8168	a-d		a-g	37.5	a-d	15.0	a-h	95.7
50	Super Tin	Cide Winder	1.1	rs	\$1,406	c-j	7823	b-l		e-l	37.0	a-f	14.7	C-O	95.8
47	Super Tin	Reguard	1.2	rs	\$1,409	c-j	7928	a-i		b-l	37.3	а-е	14.9	b-m	95.9
52	Super Tin	Liberate	1.4	rs	\$1,430	a-g	7953	a-g		a-i	36.8	a-g	15.1	a-g	95.4
49	Super Tin	Coron 25-0-0 Cide Winder	2.1	rs	\$1,399	c-k	7890	b-k	218	a-i	36.8	a-g	14.9	a-k	95.8
51	Super Tin	LI 700	2.3	rs	\$1,422	a-h	7906	а-ј	217	а-ј	36.8	a-g	14.9	a-k	96.3
53	Super Tin	Wet-Sol 99	3.6	qrs	\$1,443	а-е	8010	a-f	224	а-е	36.2	a-i	15.3	a-d	95.7
54	Super Tin	No Sticker	3.7	p-s	\$1,479	abc	8162	а-е	224	a-d	36.7	a-g	15.3	abc	96.1
11	EBDC (7 Day)	Reguard	0.6	s	\$1,459	a-d	8314	abc	220	a-f	38.0	ab	15.2	а-е	96.1
12	EBDC (7 Day)	Reguard	0.8	rs	\$1,409	с-ј	8159	а-е	225 a	abc	36.6	a-h	15.4	ab	95.6
	` ,	Diligence													
10	EBDC (7 Day)	Masterlock	0.9	rs	\$1,383	c-m	7833	b-l	218	a-i	36.3	a-i	14.7	C-O	95.6
16	EBDC (7 Day)	Liberate	1.1	rs	\$1,532	а	8597	а	228	а	38.1	а	15.5	а	96.5
14	EBDC (7 Day)	Cide Winder	1.1	rs	\$1,413	b-i	7951	a-h	218	a-i	36.8	a-g	14.9	a-l	95.6
15	EBDC (7 Day)	LI 700	1.3	rs	\$1,389	c-l	8065	a-f	215	b-l	36.6	a-h	14.8	b-n	95.8
18	EBDC (7 Day)	No Sticker	1.5	rs	\$1,528	ab	8476	ab	225	ab	37.7	abc	15.3	a-d	95.7
13	EBDC (7 Day)	Coron 25-0-0	1.8	rs	\$1,399	c-k	8041	a-f	218	a-i	37.3	а-е	14.9	a-l	95.7
		Cide Winder													
17	EBDC (7 Day)	Wet-Sol 99	1.8	rs	\$1,433	a-g	8051	a-f	220	a-g	36.9	a-g	15.1	a-f	95.8
19	EBDC (10 Day)	Masterlock	4.9	o-s	\$1,369	C-O	7625	C-O	213	e-l	36.1	а-ј	14.6	e-o	95.6
21	EBDC (10 Day)	Reguard	6.3	n-s	\$1,391	c-l	7882	b-k	218	a-i	36.5	a-i	15.0	a-i	95.8
		Diligence													
24	EBDC (10 Day)	LI 700	6.8	m-s	\$1,441	a-f	7955	a-g	214	c-l	37.2	а-е	14.8	b-n	95.6
27	EBDC (10 Day)	No Sticker	7.9	l-r	\$1,385	c-m	7591	d-o	212	f-l	36.0	a-j	14.7	d-o	96.0
22	EBDC (10 Day)	Coron 25-0-0	9.5	k-g	\$1,301	h-r	7571	d-o	213	d-l	34.8	e-o	14.7	C-O	95.7
		Cide Winder													
20	EBDC (10 Day)	Reguard	9.8	j-q	\$1,396	c-l	7805	b-l	216	b-j	36.1	a-j	14.9	a-l	96.0
26	EBDC (10 Day)	Wet-Sol 99	10.5	j-q	\$1,403	c-k	7733	c-l	212	f-l	36.6	a-h	14.5	f-o	95.5
25	EBDC (10 Day)	Liberate	10.6	j-p	\$1,380	c-n	7625	C-O	212	f-l	35.9	a-k	14.6	e-o	95.7
23	EDBC (10 Day)	Cide Winder	12.7	h-n	\$1,396	c-l	7718	c-m	220	a-g	35.3	C-O	15.0	a-h	96.1

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora* beticola and *Alternaria alternata* Leafspot Control in Sugarbeets

Average of 2 Locations - 2018 (Page 2 of 15)

No.	Treatment	Sticker	% Leafs Dama	pot age	Net \$/	/A	RWS	SA	RW	ST	Т//	Ą	% SU		% CJP
34	EBDC (13 Day)	Liberate	11.5	i-o	\$1,343	d-p	7379	f-q	209	g-m	35.4	b-n	14.4	h-p	95.2
29	EBDC (13 Day)	Reguard	13.4	f-n	\$1,287	j-r	7165	l-r	208	i-m	34.7	e-o	14.3	i-p	95.6
30	EBDC (13 Day)	Reguard	13.6	f-m	\$1,294	i-r	7280	g-q	207	i-m	35.1	C-O	14.3	j-p	95.6
		Diligence													
36	EBDC (13 Day)	No Sticker	16.2	e-k	\$1,317	g-p	7196	j-q	208	h-m	34.8	e-o	14.4	i-p	95.9
33	EBDC (13 Day)	LI 700	16.8	d-j	\$1,265	m-s	6967	o-r	209	g-m	33.6	j-o	14.4	h-p	95.5
28	EBDC (13 Day)	Masterlock	18.7	c-h	\$1,237	p-s	7187	k-q	205	j-m	33.3	k-o	14.3	l-p	95.6
31	EBDC (13 Day)	Coron 25-0-0	22.6	b-e	\$1,158	S	6502	r	199	m	32.9	no	13.9	р	95.8
		Cide Winder													
32	EBDC (13 Day)	Cide Winder	23.2	bcd	\$1,216	qrs	6710	qr	204	lm	33.2	l-o	14.2	nop	95.8
35	EBDC (13 Day)	Wet-Sol 99	26.8	b	\$1,237	p-s	6814	pqr	205	klm	33.6	j-o	14.1	ор	95.8
,															
43	Badge	Liberate	6.4	n-s	\$1,216	qrs	6986	n-r	212	f-l	33.2	mno	14.6	e-o	96.0
44	Badge	Wet-Sol 99	6.8	m-s	\$1,227	p-s	7017	m-r	211	f-l	33.2	mno	14.6	e-o	95.2
45	Badge	No Sticker	11.3	i-o	\$1,282	k-r	7236	h-q	208	i-m	35.1	C-O	14.5	g-p	95.7
38	Badge	Reguard	12.1	h-n	\$1,237	p-s	7204	j-q	211	f-l	34.4	g-o	14.6	e-o	95.5
42	Badge	LI 700	13.2	g-n	\$1,276	l-s	7294	g-q	214	c-l	34.0	h-o	14.7	b-o	96.1
37	Badge	Masterlock	13.3	f-n	\$1,322	e-q	7588	d-o	218	a-i	35.1	C-O	14.8	b-m	95.8
39	Badge	Reguard	13.7	f-m	\$1,251	0 - S	7391	f-q	209	g-m	35.4	b-n	14.5	f-o	95.4
10	5 .	Diligence	10.0		**		2222		00=		00.4		440		0.7.4
40	Badge	Coron 25-0-0	13.9	f-l	\$1,157	S	6802	pqr	205	j-m	33.1	mno	14.3	l-p	95.4
44	Dadas	Cide Winder	44.0	£ 1	Ф4 00 г		7000		040		04.5		45.4		05.7
41	Badge	Cide Winder	14.6	f-l	\$1,335	e-q	7608	C-0	219	a-g	34.5	f-o	15.1	a-g	95.7
0	Trianala	Desurant	0.7	:	#4 040		7044		045	la Ia	25.0		440	l	05.0
2	Triazole	Reguard	9.7	j-q	\$1,318	f-q	7611	C-0	215	b-k	35.6	a-m	14.8	b-n	95.9
6	Triazole	LI 700	17.8	C-i	\$1,260	n-s	7216 7690	i-q	208	h-m	34.9	d-o	14.2	m-p	95.4
3	Triazole	Reguard	18.0	C-i	\$1,319	f-q	7690	c-n	215	b-k	35.9	a-k	14.8	b-n	95.5
	Trionala	Diligence	20.4	2 2	Ф4 200	0.10	70.40	h l	218	a :	35.8	0 100	15.0		05.0
5	Triazole Triazole	Cide Winder Masterlock	20.1	c-g b-f	\$1,380 \$1,299	c-n h-r	7848 7458	b-l	209	a-i	35.8	a-m a-l	14.4	a-j	95.2 95.5
				-				d-p		g-m			14.7	g-p	
4	Triazole	Coron 25-0-0 Cide Winder	22.2	р-е	\$1,194	rs	6972	0-1	213	u-i	32.7	0	14.7	C-0	95.9
7	Triazole	Liberate	23.4	bod	\$1,304	h r	7445	0.0	213	0.1	35.3		14.6	0.0	95.8
9	Triazole		24.2	_		h-r	7538		213	e-l e-l	35.6	C-0		e-o d-o	95.8
8	Triazole	No Sticker Wet-Sol 99	34.5	a	\$1,212	e-q qrs	6959	d-o o-r	207	i-m	33.9	a-m i-0	14.7	k-p	96.0
O	Παζυίσ	4 A E (-201 22	54.5	а	ψ1,∠1∠	чιъ	บฮอฮ	0-1	201	1-111	55.8	1-0	14.3	ν - μ	90.0
Av	rerage		10.4	.7	\$1,343	3.7	7591	.7	213	3.9	35.5	58	14.	72	95.72
	SD 5%		5.7		98.6		571		8.		2.1		0.5		0.64
	/%		34.		4.5		4.6		2.		3.		2.		0.4
			0							~					

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Sticker / Spreaders added to Fungicides for Cercospora beticola and Alternaria alternata Leafspot Control in Sugarbeets Average of 2 Locations - 2018 (Page 3 of 15)

Effect of Spreader / Sticker

No.	Treatment	% Leaf Dama	ige	Net \$	/A	RWS	A	RWST	Т/#	١.	% SUC	% CJP
2	Reguard	7.8	е	\$1,351	abc	7671	а	214	36.0	ab	14.8	95.8
3	Reguard	8.8	de	\$1,347	abc	7743	а	215	36.1	а	14.8	95.6
	Diligence											
7	Liberate	9.1	de	\$1,368	ab	7664	а	215	35.8	ab	14.8	95.8
6	LI 700	9.7	cde	\$1,342	bc	7567	ab	213	35.5	ab	14.7	95.8
1	Masterlock	9.9	b-e	\$1,346	bc	7643	ab	214	35.7	ab	14.6	95.6
9	No Sticker	10.8	bcd	\$1,387	а	7700	а	215	36.0	а	14.8	95.9
4	Coron 25-0-0	12.0	abc	\$1,268	d	7296	С	211	34.6	С	14.6	95.7
	Cide Winder											
5	Cide Winder	12.1	ab	\$1,357	abc	7610	ab	215	35.4	abc	14.8	95.7
8	Wet-Sol 99	14.0	а	\$1,326	С	7431	bc	213	35.1	bc	14.7	95.7
		40.4	-	04.04	0.7	7504	-	040.0	05.5		4.4.70	05.70
A۷	rerage	10.4	·/	\$1,34	3.7	7591.	./	213.9	35.5	8	14.72	95.72
LS	SD 5%	2.30	6	40.3	3	233.	3	3.6	0.8	7	0.21	0.26
C\	/%	34.	1	4.5		4.6		2.6	3.7	7	2.1	0.4

Effect of Fungicide Program

No.	Treatment	% Leafs Dama	ge	Net \$	/A	RWS	A	RWS ⁻	г	T/A		% SU(% CJP
2	EBDC (7 Day)	1.2	е	\$1,438	а	8165	а	221	а	37.1	а	15.1	а	95.8
6	Super Tin	1.9	е	\$1,431	а	7989	b	218	а	36.9	а	15.0	а	95.8
3	EBDC (10 Day)	8.8	d	\$1,385	b	7723	С	214	b	36.1	b	14.8	b	95.8
5	Badge	11.7	С	\$1,256	d	7236	е	212	b	34.2	d	14.6	b	95.6
4	EBDC (13 Day)	18.1	b	\$1,262	cd	7022	f	206	С	34.1	d	14.3	С	95.6
1	Triazole	21.1	а	\$1,291	С	7415	d	212	b	35.1	С	14.6	b	95.7
А١	verage	10.4	6	\$1,343	3.7	7591.	7	213.9)	35.5	8	14.7	7 2	95.72
LS	SD 5%	2.12	2	32.4	1	169.0)	3.49		0.57	7	0.2	2	0.23
	10/	22./	1	4.0		2.7		2.7		2.7		2.5		0.4

CV% 3.7

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Reguard, Reguard + Diligence, Liberate, LI 700 and Masterlock appeared to improve fungicide efficacy in these trials. Coron, Cidewinder and Wet-Sol did not improve fungicide efficacy. None of the sticker treatments extended the fungicidal activity of an EBDC. Protectant fungicides were more effective than Triazole fungicides. In past years stickers have improved fungicide efficacy more than in this years trials, possibly due to lack of rainfall during the fungicide application season in 2018.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora*beticola and *Alternaria alternata* Leafspot Control in Sugarbeets
Auernhamer, Richville, MI - 2018 (Page 4 of 15)

Trial Quality: Good Variety: B-149N Planted: April 30

Harvested: Oct 3

Plots: 6 rows X 38 ft, 3 reps

Row Spacing: 22 inches

Soil Info: Sandy Clay Loam

**OM: 3.4 pH: 7.6 CEC: 17.1

P: above opt K: above opt

Mn: high B: med Added N: 135 lbs. Prev Crop: Corn Rhizoc Level: Low Cerc Control: See trts.

Problems: None

Seeding Rate: 4.1 inches Rainfall: 23.1 inches Beets/100 ft: ~225

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment*	Sticker	# Applic	% Leafs	pot ge	Net \$		RW		RW	ST	Т//	A	% SU	
48	Super Tin	Reguard	5	0.5	d	\$1,643	b-n	9064	b-i	208	c-i	43.4	a-l	14.4	c-h
Ш		Diligence													
46	Super Tin	Masterlock	5	0.9	d	\$1,798	a-d	9742	a-d	213	a-g	45.7	а-е	14.7	a-g
50	Super Tin	Cide Winder	5	1.2	d	\$1,662	b-l	9004	b-j	205	d-i	44.0	a-j	14.2	c-h
52	Super Tin	Liberate	5	1.9	d	\$1,689	b-j	9145	b-i	207	d-i	44.2	а-ј	14.5	c-h
47	Super Tin	Reguard	5	2.0	d	\$1,600	d-p	8758	d-l	201	e-i	43.5	a-I	14.1	e-h
54	Super Tin	No Sticker	5	2.3	d	\$1,742	a-i	9372	a-g	213	a-g	44.0	a-j	14.8	a-f
49	Super Tin	Coron 25-0-0 Cide Winder	5	2.7	d	\$1,657	b-m	9077	b-i	203	d-i	44.7	a-i	14.3	c-h
51	Super Tin	LI 700	5	3.3	d	\$1,709	а-ј	9250	a-h	207	c-i	44.6	a-i	14.5	c-h
53	Super Tin	Wet-Sol 99	5	3.7	d	\$1,764	a-g	9530	a-f	213	a-g	44.8	a-i	14.7	a-g
40	EDDC (7 Days)	Liborata	0	0.0	al	¢4 020	a la	0000	a b	247		40.0	aba	45.0	- 4
16	EBDC (7 Day)	Liberate	8	0.6	d	. ,	ab	9986	ab	217	a-e	46.0	abc	15.0	a-f
17	EBDC (7 Day)	Wet-Sol 99	8	0.8	d	. ,	a-g	9670	a-e	214	a-f	45.2	a-h	14.9	a-f
11	EBDC (7 Day)	Reguard	8	0.8	d	\$1,800		9940	abc	215	a-f	46.3	a	15.0	a-f
14	EBDC (7 Day)	Cide Winder		0.9	d	\$1,791	a-e	9783	a-d	212	a-g	46.1	ab	14.6	a-g
12	EBDC (7 Day)	Reguard Diligence	8	1.2	d	\$1,746	a-i	9766	a-d	218	a-d	44.7	a-i	15.1	a-d
10	EBDC (7 Day)	Masterlock	8	1.2		. ,	a-j	9415	a-g	208	c-i	45.2	a-h	14.5	c-h
18	EBDC (7 Day)	No Sticker	8	1.4		\$1,895	а	10237	а	224	abc	45.8	a-d	15.2	abc
13	EBDC (7 Day)	Coron 25-0-0 Cide Winder	8	1.6	d	\$1,606	с-р	8952	b-k	204	d-i	43.8	а-ј	14.2	d-h
15	EBDC (7 Day)	LI 700	8	1.9	d	\$1,760	a-h	9619	a-f	211	a-h	45.6	a-f	14.6	a-g
24	EBDC (10 Day)	LI 700	6	0.9	٨	\$1,769	a-g	9515	a-f	215	a-f	44.3	a-i	14.9	a-f
19	EBDC (10 Day)	Masterlock	6	1.0	d	\$1,703	j-p	8262	h-l	202	d-i	40.9	i-m	14.1	fgh
23	EBDC (10 Day)	Cide Winder	6	1.6	d		b-j	9117	b-i	216	a-e	42.2	a-I	14.9	a-f
20	EBDC (10 Day)	Reguard	6	1.9	d	\$1,759	a-h	9558	a-f	219	a-d	43.8	a-j	15.0	а-е
22	EBDC (10 Day)	Coron 25-0-0	6	2.3	d	\$1,611	C-O	8813	d-l	204	d-i	43.4	a-l	14.3	c-h
	(:===;)	Cide Winder			-	Ψ.,σ					<u>.</u>				•
25	EBDC (10 Day)	Liberate	6	2.3	d	\$1,715	а-ј	9237	a-h	212	a-g	43.5	a-k	14.7	a-g
27	EBDC (10 Day)	No Sticker	6	3.3	d	\$1,703	а-ј	9109	b-i	205	d-i	44.3	a-i	14.4	c-h
26	EBDC (10 Day)	Wet-Sol 99	6	3.3	d	\$1,776	a-f	9543	a-f	210	a-i	45.5	a-g	14.5	c-h
21	EBDC (10 Day)	Reguard	6	4.2	d	\$1,701	а-ј	9351	a-g	211	a-i	44.4	a-i	14.6	a-g
		Diligence													

^{*} All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora* beticola and *Alternaria alternata* Leafspot Control in Sugarbeets

Auernhamer, Richville, MI - 2018 (Page 5 of 15)

No.	Treatment*	Sticker	# Applic	% Leafs Dama 5-Se	pot age	Net \$	/A	RWS	SA	RW	ST	T/	A	% SU	
28	EBDC (13 day)	Masterlock	6	1.8	d	\$1,594	е-р	8580	f-l	205	d-i	41.9	c-l	14.3	c-h
34	EBDC (13 Day)	Liberate	6	3.0	d	\$1,690	b-j	9059	b-i	207	c-i	43.6	a-j	14.3	c-h
29	EBDC (10 Day)	Reguard	6	4.0	d	\$1,598	е-р	8655	e-l	203	d-i	42.6	a-l	14.2	d-h
36	EBDC (13 Day)	No Sticker	6	6.7	cd	\$1,578	f-p	8419	g-l	204	d-i	41.2	h-m	14.1	fgh
30	EBDC (13 Day)	Reguard Diligence	6	7.7	cd	\$1,619	C-O	8842	d-k	208	c-i	42.6	a-l	14.4	c-h
33	EBDC (13 Day)	LI 700	6	9.0	cd	\$1,562	h-p	8389	g-l	203	d-i	41.4	g-m	14.1	e-h
35	EBDC (13 Day)	Wet-Sol 99	6	15.3	bc	\$1,540	j-p	8267	h-l	197	ghi	41.9	c-l	13.8	gh
31	EBDC (13 Day)	Coron 25-0-0 Cide Winder	6	19.8	ab	\$1,429	ор	7795	I	194	i	40.1	j-m	13.5	h
32	EBDC (13 Day)	Cide Winder	6	20.7	ab	\$1,478	k-p	7948	kl	195	hi	40.7	i-m	13.8	gh
44	Copper	Wet-Sol 99	8	1.6	d	\$1,607	с-р	8880	d-k	214	a-f	41.5	f-m	14.9	a-f
39	Copper	Reguard	8	1.6	d	\$1,547	i-p	8798	d-l	206	d-i	42.6	a-I	14.4	c-h
		Diligence													
40	Copper	Coron 25-0-0	8	1.9	d	\$1,452	nop	8216	h-l	209	b-i	39.4	klm	14.6	a-g
		Cide Winder													
43	Copper	Liberate	8	2.1	d	\$1,460	m-p	8125	i-l	206	d-i	39.4	lm	14.4	c-h
38	Copper	Reguard	8	2.1	d	\$1,533	j-p	8614	f-l	205	d-i	42.1	b-l	14.4	c-h
42	Copper	LI 700	8	2.3	d	\$1,615	C-O	8931	c-k	215	a-f	41.6	e-m	14.9	a-f
41	Copper	Cide Winder	8	3.0	d	\$1,672	b-k	9227	a-h	226	а	40.9	i-m	15.5	а
37	Copper	Masterlock	8	4.7	cd	\$1,559	i-p	8676	e-l	209	b-i	41.5	f-m	14.5	c-h
45	Copper	No Sticker	8	6.0	cd	\$1,632	b-n	8930	c-k	201	e-i	44.4	a-i	14.2	d-h
5	Triazole	Cide Winder	5	3.6	d	\$1,717	a-j	9465	a-f	225	ab	42.1	b-l	15.5	a-b
6	Triazole	LI 700	5	4.7	cd	\$1,555	i-p	8619	f-I	205	d-i	42.2	a-l	14.1	e-h
2	Triazole	Reguard	5	4.7	cd	\$1,575	g-p	8799	d-l	208	c-i	42.2	a-I	14.5	c-h
3	Triazole	Reguard Diligence	5	6.3	cd	\$1,618	C-O	9103	b-i	211	a-i	43.3	a-l	14.6	a-g
7	Triazole	Liberate	5	6.7	cd	\$1,651	b-m	9118	b-i	207	c-i	44.0	a-j	14.4	c-h
4	Triazole	Coron 25-0-0 Cide Winder	5	8.3	cd	\$1,414	р	7980	jkl	211	a-h	37.8	m	14.5	b-g
1	Triazole	Masterlock	5	9.2	cd	\$1,552	i-p	8629	e-l	207	d-i	41.8	d-l	14.4	c-h
9	Triazole	No Sticker	5	10.0	cd	\$1,670	b-k	9164	b-i	208	c-i	44.1	а-ј	14.4	c-h
8	Triazole	Wet-Sol 99	5	28.3	а	\$1,470	l-p	8171	i-l	199	f-i	41.1	h-m	13.8	gh
Λ.,	orago			4.5	2	\$1,64	16	9003	2.0	208	0 0	43.	11	14.	50
	erage D 5%			8.9		158.		827		13		43. 3.		0.	
	/%			121		6.0		5.7		3.		4.		3.2	

^{*} All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18 Means followed by same letter are not significantly different. Duncan's New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Sticker / Spreaders added to Fungicides for Cercospora beticola and Alternaria alternata Leafspot Control in Sugarbeets MICHIGAN SUGAR Auernhamer, Richville, MI - 2018 (Page 6 of 15)

Effect of Spreader / Sticker

No.	Treatment	% Leat Dama 5-Se	age	Net \$/	/A	RWS	A	RWST	T/A	\	% SUC	% CJP
2	Reguard	2.6	b	\$1,644	ab	9054	а	208	43.4	а	14.5	95.6
7	Liberate	2.8	b	\$1,673	ab	9112	а	210	43.5	а	14.5	95.4
1	Masterlock	3.1	b	\$1,623	b	8884	а	207	42.8	ab	14.4	95.3
3	Reguard	3.6	b	\$1,646	ab	9154	а	210	43.5	а	14.6	95.2
	Diligence											
6	LI 700	3.7	b	\$1,662	ab	9054	а	209	43.3	а	14.5	95.7
9	No Sticker	4.9	b	\$1,703	а	9205	а	209	44.0	а	14.5	95.6
5	Cide Winder	5.2	b	\$1,669	ab	9091	а	213	42.7	ab	14.7	95.4
4	Coron 25-0-0	6.1	ab	\$1,528	С	8472	b	204	41.5	b	14.2	95.3
	Cide Winder											
8	Wet-Sol 99	8.8	а	\$1,655	ab	9010	а	208	43.3	а	14.4	95.4
۸۱	/erage	4.5	3	\$1,644	1.6	9003	٥	208.8	43.1	1	14.49	95.40
	SD 5%	3.6	_	64.7		337.		200.0 n.s.	1.3		n.s.	95.40 n.s.
_	/%	121		5.9		5.7		3.9	4.7		3.2	0.5

Effect of Fungicide Program

No.	Treatment	% Leaf Dama 5-Se	age	Net \$/	Ą	RWS.	A	RWS	т	T/A	١.	% SUC		% CJP
2	EBDC (7 Day)	1.1	b	\$1,768	а	9707	а	214	а	45.4	а	14.8	а	95.6
6	Super Tin	2.1	b	\$1,696	b	9216	b	208	b	44.3	ab	14.5	b	95.5
3	EBDC (10 Day)	2.3	b	\$1,694	b	9167	b	210	ab	43.6	b	14.6	ab	95.5
5	Copper	2.8	b	\$1,564	С	8711	С	210	b	41.5	С	14.6	ab	95.3
1	Triazole	9.1	а	\$1,580	С	8783	С	209	b	42.1	С	14.5	b	95.2
4	EBDC (13 Day)	9.8	а	\$1,565	С	8439	d	202	С	41.8	С	14.1	С	95.3
\equiv														
A١	/erage	4.5	3	\$1,644	.6	9003.	9	208.	8	43.1	1	14.5	0	95.40
LS	SD 5%	4.3	0	51.9		270.9	9	3.6		1.36	6	0.23	3	n.s.
C/	V%	156	.6	5.2		5.0		2.8		5.2		2.6		0.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Reguard, Liberate, Masterlock and LI 700 appeared to improve fungicide efficacy. Cide Winder, Coron 25-0-0 and Wet-Sol 99 did not improve the effectiveness of fungicides. None of the stickers extended the fungicidal activity of an EBDC. The Cercospora (Cercospora beticola) and Alternaria (Alternaria alternata) leafspot pressure was high.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora beticola* and *Alternaria alternata* Leafspot Control in Sugarbeets

Auernhamer, Richville, MI - 2018 (Page 7 of 15)

No.	Program	Sticker	Treatment	# App	Date
1	Triazole	Masterlock	Inspire + Manzate	3	7/11, 8/7, 9/4
1 ' 1	THAZOIC	Wasterlock	Manzate	2	7/28, 8/23
2	Triazole	Reguard	Inspire + Manzate	3	7/11, 8/7, 9/4
			Manzate	2	7/28, 8/23
3	Triazole	Reguard + Diligence	Inspire + Manzate	3	7/11, 8/7, 9/4
ш			Manzate	2	7/28, 8/23
4	Triazole	Coron 25-0-0 + Cidewinder	Inspire + Manzate	3	7/11, 8/7, 9/4
5	Triazole	Cidewinder	Manzate Inspire + Manzate	3	7/28, 8/23 7/11, 8/7, 9/4
3	THAZOIE	Cidewinder	Manzate	2	7/11, 8/7, 9/4 7/28, 8/23
6	Triazole	LI 700	Inspire + Manzate	3	7/11, 8/7, 9/4
			Manzate	2	7/28, 8/23
7	Triazole	Liberate	Inspire + Manzate	3	7/11, 8/7, 9/4
			Manzate	2	7/28, 8/23
8	Triazole	Wet-Sol 99	Inspire + Manzate	3	7/11, 8/7, 9/4
			Manzate	2	7/28, 8/23
9	Triazole	No Sticker	Inspire + Manzate	3	7/11, 8/7, 9/4
10	EBDC - (7 Day)	Masterlock	Manzate Manzate	7	7/28, 8/23 7/11, 7/19, 7/25, 8/1
10	EDDC - (/ Day)	Masteriock	Manzate	/	8/7, 8/15, 8/23
			Badge	1	8/31
11	EBDC - (7 Day)	Reguard	Manzate	7	7/11, 7/19, 7/25, 8/1
1 1	LDDO (7 Day)	rtoguaru	Wallzate	,	8/7, 8/15, 8/23
			Badge	1	8/31
12	EBDC - (7 Day)	Reguard + Diligence	Manzate	7	7/11, 7/19, 7/25, 8/1
	, , ,				8/7, 8/15, 8/23
			Badge	1	8/31
13	EBDC - (7 Day)	Coron 25-0-0 + Cidewinder	Manzate	7	7/11, 7/19, 7/25, 8/1
					8/7, 8/15, 8/23
			Badge	1	8/31
14	EBDC - (7 Day)	Cidewinder	Manzate	7	7/11, 7/19, 7/25, 8/1
					8/7, 8/15, 8/23
4.5	EDDO (ZDavi)	11.700	Badge	1	8/31
15	EBDC - (7 Day)	LI 700	Manzate	7	7/11, 7/19, 7/25, 8/1
			Badge	1	8/7, 8/15, 8/23 8/31
16	EBDC - (7 Day)	Liberate	Manzate	7	7/11, 7/19, 7/25, 8/1
10	LDDO (7 Day)	Liberate	Wanzate	,	8/7, 8/15, 8/23
			Badge	1	8/31
17	EBDC - (7 Day)	Wet-Sol 99	Manzate	7	7/11, 7/19, 7/25, 8/1
	() /				8/7, 8/15, 8/23
			Badge	1	8/31
18	EBDC - (7 Day)	No Sticker	Manzate	7	7/11, 7/19, 7/25, 8/1
					8/7, 8/15, 8/23
			Badge	1	8/31
19	EBDC - (10 Day)	Masterlock	Manzate	6	7/11, 7/20, 7/30, 8/9
00	EDDO (40.D.)	Damiand	Manage		8/20, 8/31
20	EBDC - (10 Day)	Reguard	Manzate	6	7/11, 7/20, 7/30, 8/9
					8/20, 8/31

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora beticola* and *Alternaria alternata* Leafspot Control in Sugarbeets

Auernhamer, Richville, MI - 2018 (Page 8 of 15)

No.	Program	Sticker	Treatment	# App	Date
21	EBDC - (10 Day)	Reguard + Diligence	Manzate	6	7/11, 7/20, 7/30, 8/9
					8/20, 8/31
22	EBDC - (10 Day)	Coron 25-0-0 + Cidewinder	Manzate	6	7/11, 7/20, 7/30, 8/9
					8/20, 8/31
23	EBDC - (10 Day)	Cidewinder	Manzate	6	7/11, 7/20, 7/30, 8/9
Ш					8/20, 8/31
24	EBDC - (10 Day)	LI 700	Manzate	6	7/11, 7/20, 7/30, 8/9
					8/20, 8/31
25	EBDC - (10 Day)	Liberate	Manzate	6	7/11, 7/20, 7/30, 8/9
	EDDO (40 D)	W + 0 + 00		0	8/20, 8/31
26	EBDC - (10 Day)	Wet-Sol 99	Manzate	6	7/11, 7/20, 7/30, 8/9
07	EDDC (40 Dev)	No Chielean	Manzate	6	8/20, 8/31
27	EBDC - (10 Day)	No Sticker	Manzate	0	7/11, 7/20, 7/30, 8/9 8/20, 8/31
28	EBDC - (13 Day)	Masterlock	Manzate	5	7/11, 7/24, 8/6
20	LDDC - (13 Day)	Masteriock	Manzate		8/20, 9/4
29	EBDC - (13 Day)	Reguard	Manzate	5	7/11, 7/24, 8/6
25	2330 (103ay)	rtoguara	Manzato		8/20, 9/4
30	EBDC - (13 Day)	Reguard + Diligence	Manzate	5	7/11, 7/24, 8/6
	- (3			8/20, 9/4
31	EBDC - (13 Day)	Coron 25-0-0 + Cidewinder	Manzate	5	7/11, 7/24, 8/6
					8/20, 9/4
32	EBDC - (13 Day)	Cidewinder	Manzate	5	7/11, 7/24, 8/6
					8/20, 9/4
33	EBDC - (13 Day)	LI 700	Manzate	5	7/11, 7/24, 8/6
Ш					8/20, 9/4
34	EBDC - (13 Day)	Liberate	Manzate	5	7/11, 7/24, 8/6
					8/20, 9/4
35	EBDC - (13 Day)	Wet-Sol 99	Manzate	5	7/11, 7/24, 8/6
	5550 (405)	N 0011	•		8/20, 9/4
36	EBDC - (13 Day)	No Sticker	Manzate	5	7/11, 7/24, 8/6
0.7	Connor	Magtarlagic	Dadaa	8	8/20, 9/4
37	Copper	Masterlock	Badge	°	7/11, 7/19, 7/25, 8/1 8/7, 8/15, 8/23, 8/31
38	Copper	Reguard	Badge	8	7/11, 7/19, 7/25, 8/1
30	Сорреі	Noguara	Daugo		8/7, 8/15, 8/23, 8/31
39	Copper	Reguard + Diligence	Badge	8	7/11, 7/19, 7/25, 8/1
		g	9		8/7, 8/15, 8/23, 8/31
40	Copper	Coron 25-0-0 + Cidewinder	Badge	8	7/11, 7/19, 7/25, 8/1
					8/7, 8/15, 8/23, 8/31

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora beticola* and *Alternaria alternata* Leafspot Control in Sugarbeets

Auernhamer, Richville, MI - 2018 (Page 9 of 15)

No.	Program	Sticker	Treatment	Арр	Date
41	Copper	Cidewinder	Badge	8	7/11, 7/19, 7/25, 8/1
					8/7, 8/15, 8/23, 8/31
42	Copper	LI 700	Badge	8	7/11, 7/19, 7/25, 8/1
					8/7, 8/15, 8/23, 8/31
43	Copper	Liberate	Badge	8	7/11, 7/19, 7/25, 8/1
Ш					8/7, 8/15, 8/23, 8/31
44	Copper	Wet-Sol 99	Badge	8	7/11, 7/19, 7/25, 8/1
					8/7, 8/15, 8/23, 8/31
45	Copper	No Sticker	Badge	8	7/11, 7/19, 7/25, 8/1
					8/7, 8/15, 8/23, 8/31
46	Super Tin	Masterlock	Super Tin + Manzate	3	7/11, 8/6, 8/31
			Manzate	2	7/25, 8/20
47	Super Tin	Reguard	Super Tin + Manzate	3	7/11, 8/6, 8/31
			Manzate	2	7/25, 8/20
48	Super Tin	Reguard + Diligence	Super Tin + Manzate	3	7/11, 8/6, 8/31
			Manzate	2	7/25, 8/20
49	Super Tin	Coron 25-0-0 + Cidewinder	Super Tin + Manzate	3	7/11, 8/6, 8/31
			Manzate	2	7/25, 8/20
50	Super Tin	Cidewinder	Super Tin + Manzate	3	7/11, 8/6, 8/31
			Manzate	2	7/25, 8/20
51	Super Tin	LI 700	Super Tin + Manzate	3	7/11, 8/6, 8/31
			Manzate	2	7/25, 8/20
52	Super Tin	Liberate	Super Tin + Manzate	3	7/11, 8/6, 8/31
			Manzate	2	7/25, 8/20
53	Super Tin	Wet-Sol 99	Super Tin + Manzate	3	7/11, 8/6, 8/31
			Manzate	2	7/25, 8/20
54	Super Tin	No Sticker	Super Tin + Manzate	3	7/11, 8/6, 8/31
			Manzate	2	7/25, 8/20

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora* beticola and *Alternaria alternata* Leafspot Control in Sugarbeets Laker Agronomy Field, Elkton, MI - 2018 (Page 10 of 15)

Trial Quality: Good Variety: B-149N

Planted: May 2
Harvested: Oct 18
Plots: 6 rows X 38 ft, 3 reps
Row Spacing: 22 inches

Soil Info: Clay Loam%OM: 2.5 pH: 6.9 CEC: 14.6P: above opt K: above opt

Mn: high B: low Added N: 135 lbs. Prev Crop: Soybeans Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.1 inches Rainfall: 21.6 inches Beets/100 ft: ~180

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment*	Sticker	#	%		afspo nage	t	Net \$	Net \$/A		SA	RW	ST	T/A		%	
			Applic	18-	Sep	7-S	ер									SU	C
47	Super Tin	Reguard	5	0.1	n	0.2	k	\$1,218	ab	7099	abc	228	a-g	31.1	а	15.6	abc
48	Super Tin	Reguard	5	0.7	n	0.2	k	\$1,195	a-d	7051	a-d	229	a-f	30.7	abc	15.6	abc
		Diligence															
50	Super Tin	Cide Winder	5	1.6	n	0.3	k	\$1,550	a-f	6643	a-h	220	c-l	30.1	a-d	15.2	a-i
52	Super Tin	Liberate	5	1.7	n	0.2	k	\$1,172	а-е	6762	a-g	230	a-f	29.4	a-f	15.7	abc
51	Super Tin	LI 700	5	2.3	n	0.2	k	\$1,135	a-h	6563	a-i	227	a-h	28.9	a-h	15.4	a-f
46	Super Tin	Masterlock	5	2.3	n	0.2	k	\$1,136	a-h	6595	a-i	225	а-ј	29.3	a-g	15.4	a-g
49	Super Tin	Coron 25-0-0	5	2.7	n	0.3	k	\$1,142	a-g	6702	a-h	232	a-d	28.9	a-h	15.6	a-d
Ш		Cide Winder															
53	Super Tin	Wet Sol 99	5	4.7	n	2.3	jk	\$1,123			_		abc	27.7	a-h	15.9	ab
54	Super Tin	No Sticker	5	10.0	mn	0.4	k	\$1,217	abc	6952	a-f	236	ab	29.5	a-f	15.9	ab
11	EBDC (7 Day)	Reguard	7	0.6	n	0.1	k	\$1,117	a-i	6688	a-h	226	a-i	29 7	a-f	15.4	a-e
'	(:	Diligence	,	0.0				V 1,111	۵.		٠		۵.		۵.		u 0
12	EBDC (7 Day)	Reguard	7	0.8	n	0.1	k	\$1,071	a-j	6551	a-i	231	a-e	28.4	a-h	15.6	abc
15	EBDC (7 Day)	LI 700	7	1.2	n	0.1	k	\$1,018				218	d-n		a-h	15.0	
10	EBDC (7 Day)	Masterlock	7	1.2	n	0.1	k	\$1,052	b-l	6252			a-g	27.4	a-h	14.9	
14	EBDC (7 Day)	Cide Winder	7	2.6	n	0.1	k	\$1,034	d-l	6119			b-k		a-h	15.2	
18	EBDC (7 Day)	No Sticker	7	3.0	n	0.1	k	\$1,160	a-f	6716	a-h	227	a-h	29.6	a-f	15.4	а-е
16	EBDC (7 Day)	Liberate	7	3.0	n	0.1	k	\$1,233	а	7207	а	239	а	30.2	a-d	16.0	а
13	EBDC (7 Day)	Coron 25-0-0	7	4.0	n	0.1	k	\$1,193	a-d	7129	ab	231	а-е	30.8	ab	15.6	a-d
		Cide Winder															
17	EBDC (7 Day)	Wet Sol 99	7	5.5	n	0.4	k	\$1,094	a-j	6433	a-k	226	a-j	28.5	a-h	15.4	а-е
21	EBDC (10 day)	Reguard	6	14.3	k n	2.6	ijk	\$1,081	٠ i	6414	م ا	225	o k	20.6	a h	15.3	0.0
4	EBDC (10 day)	Diligence	О	14.3	K-II	2.0	ijĸ	Φ1,001	a-j	0414	а-і	223	a-ĸ	20.0	a-II	15.5	a-y
19	EBDC (10 Day)	Masterlock	6	15.7	i-n	1.9	jk	\$1,216	ahc	6088	2-0	224	h-k	31 2	а	15.1	h-I
24	EBDC (10 Day)	LI 700	6	23.5	_	1.9	jk	\$1,114	a-i	6396	_		h-o		a-d	14.7	
27	EBDC (10 day)	No Sticker	6	23.7		1.5	jk	\$1,067		6074				_		14.9	
22	EBDC (10 day)	Coron 25-0-0					-	\$992									
	LDDO (10 Day)	Cide Winder		20.5	1 1	J.2	a-v	ΨυυΣ		0023	a-i	220	D I	20.0	u II	10.1	אט
20	EBDC (10 Day)	Reguard	6	29.5	f_i	6.0	f-k	\$1,033	d-I	6053	C-D	214	n- 0	28.3	a ₋ h	14.7	d-n
26	EBDC (10 Day)	Wet Sol 99	6	34.2	_	1.0	jk	\$1,030			_					14.7	
25	EBDC (10 Day)	Liberate	6	35.8		1.8	jk	\$1,030		6014				28.3		14.5	
23	EBDC (10 Day)	Cide Winder	6					\$1,100									
23	LDDC (10 Day)	Cide Williael	U	JJ.Z	υ - g	0.5	u-k	φ1,100	a-j	0010	a⁼i	223	ט-ע	20.3	a-II	10.1	n-j

^{*} All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora* beticola and *Alternaria alternata* Leafspot Control in Sugarbeets

Laker Agronomy Field, Elkton, MI - 2018 (Page 11 of 15)

No.	Treatment*	Sticker	#			fspot age		Net \$:/A	RW	2 A	RW	ют	T/	'Λ	%	
NO.	Heatment	Sticker	Applic			7-S	ер	Met a	/A	IV VV	3A	KW	31	17.	^	SU	С
30	EBDC (13 Day)	Reguard	5		f-j	9.0	d-j	\$969	h-n	5718	g-n	207	l-o	27.6	a-h	14.3	j-n
	, , ,	Diligence					•				Ū						
34	EBDC (13 Day)	Liberate	5	32.5	e-i	7.5	e-k	\$996	f-n	5698	h-n	210	k-o	27.1	a-h	14.4	h-n
31	EBDC (13 Day)	Coron 25-0-0	5	37.5	c-h	13.2	c-g	\$887	k-n	5208	mn	204	no	25.6	fgh	14.2	mn
		Cide Winder															
33	EBDC (13 Day)	LI 700	5	38.3	c-h	10.7	d-i	\$968	h-n	5545	i-n	215	f-o	25.8	e-h	14.7	d-n
36	EBDC (13 Day)	No Sticker	5		b-g	12.2	c-g	\$1,056	b-k	5973	e-n	211	j-o	28.3	a-h	14.6	e-n
29	EBDC (13 Day)	Reguard	5		d-g	6.3	f-k	\$976	g-n	5676	h-n	212	i-o	26.8	b-h		g-n
32	EBDC (13 Day)	Cide Winder	5		b-f	9.2	d-j	\$954	i-n	5473	j-n	213	h-o	25.7	e-h	14.6	e-n
28	EBDC (13 Day)	Masterlock	5	57.5	а	13.7	c-f	\$880	lmn	5794	g-n	205	mno		h	14.2	k-n
35	EBDC (13 Day)	Wet Sol 99	5	57.9	а	18.8	bc	\$935	j-n	5361	lmn	212	h-o	25.2	gh	14.5	f-n
40	0	1.25	0	40.0		0.0		Φ070		50.40		047		00.0		440	
43	Copper	Liberate	8		lmn	8.3	d-k	\$972	g-n	5846	g-n	217	e-n	26.9	b-h	14.8	
44	Copper	Wet Sol 99	8		i-m	4.0	h-k	\$847	n	5153 5542	n :	207	I-0	24.9	h	14.2	
45	Copper	No Sticker Masterlock	8	24.8	g-l	8.3 12.3	d-k	\$933	j-n	6500	i-n	214 226	g-o	25.9 28.8	e-h	14.8 15.2	c-n
37 38	Copper	Reguard	8	31.7 32.8	e-i e-i	11.5	c-g c-h	\$1,084 \$941	a-j	5794	a-j	217	a-i e-n	26.6	a-h c-h		c-n
39	Copper Copper	Reguard	8		d-h	16.0	cd	\$955	j-n i-n	5983	g-n e-n	212	i-0	28.2		14.7	
39	Сорреі	Diligence	0	55.0	u-II	10.0	cu	ψθΟΟ	1-11	3903	6-11	212	1-0	20.2	a-II	14.7	6-11
40	Copper	Coron 25-0-0	8	36.7	d-h	15.2	cde	\$862	mn	5387	k-n	201	0	26.8	h-h	14.0	n
	Ооррег	Cide Winder	0	30.7	u 11	10.2	cac	Ψ002		3307	K II	201	O	20.0	5 11	14.0	· · ·
42	Copper	LI 700	8	40.0	b-g	8.3	d-k	\$937	j-n	5657	h-n	213	h-o	26.5	d-h	14.6	e-n
41	Copper	Cide Winder	8		b-g	12.3	c-a	\$997	f-n	5988	e-n		h-o	28.1	a-h	14.6	
	обрро.	0.00			. 9		0 9	Ψ00.		0000	<u> </u>		0		<u> </u>		U
2	Triazole	Reguard	5	26.0	g-l	3.4	h-k	\$1,062	b-j	6422	a-k	222	b-l	28.9	a-h	15.1	b-l
6	Triazole	LI 700	5	46.7	а-е	15.3	cde	\$966	h-n	5813	g-n	211	j-o	27.5	a-h	14.4	i-n
4	Triazole	Coron 25-0-0	5	47.1	а-е	25.0	ab	\$974	h-r	5964	e-n	215	f-o	27.7	a-h	14.8	c-m
		Cide Winder															
3	Triazole	Reguard	5	47.1	а-е	12.3	c-g	\$1,020	e-m	6276	a-I	220	c-m	28.6	a-h	15.0	b-m
		Diligence															
7	Triazole	Liberate	5	49.6			а	\$958	i-n	5771	g-n	218	d-n				
5	Triazole	Cide Winder	5	49.6	-		ab	\$1,042		6231			j-o			14.4	
1	Triazole	Masterlock	5	49.6			_	\$1,047		6287						14.4	
9	Triazole	No Sticker	5			24.8	ab	\$993		5911	f-n					15.0	
8	Triazole	Wet Sol 99	5	54.2	ab	27.0	а	\$955	i-n	5748	g-n	216	f-n	26.6	c-h	14.8	c-m
Δν	erage			25.2	26	7.5	55	1042	7	6179	9.4	219	9 N	28.	04	14.9	95
	D 5%			12.5		6.7		136.		839		11		3.		0.7	
CV				30.		54		8.1		8.4			.3	7.		2.9	
				00.		01	. •	0.1		Ŭ.	•	٥.	. –			۷.۰	_

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*} All treatments were sprayed with a maintenance spray of Badge @ 2pt/A and Masterlock @ 6.4 fl oz/A on 9/18

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora* beticola and *Alternaria alternata* Leafspot Control in Sugarbeets Laker Agronomy Field, Elkton, MI - 2018 (Page 12 of 15)

Effect of Fungicide Program

No.	Treatment	% Lea	afsp	ot Dam	age	Net \$/	/Λ	RWS	: A	RW	ет	I т,	'Λ	%		%
NO.	rreatment	18-S	ер	7-Se	∋ р	Net \$/A KWSA K		L. VV	KWOT		T/A		C	CJP		
2	EBDC (7 Day)	2.4	d	0.2	d	\$1,108	b	6623	ab	228	а	28.9	ab	15.4	а	96.1
6	Super Tin	2.9	d	0.5	d	\$1,165	а	6762	а	229	а	29.5	а	15.6	а	96.1
3	EBDC (10 Day)	27.1	С	3.4	С	\$1,075	b	6279	bc	218	b	28.5	ab	14.9	b	96.1
5	Copper	30.6	С	10.7	b	\$948	С	5761	de	213	bc	27.0	cd	14.6	bc	96.0
4	EBDC (13 Day)	41.6	b	11.2	b	\$958	С	5605	е	210	С	26.3	d	14.4	С	96.0
1	Triazole	46.9	а	19.5	а	\$1,002	С	6047	cd	216	b	28.0	bc	14.8	b	96.1
Αv	/erage	25.2	6	7.5	5	\$1,042	2.7	6179	.4	219	0.0	28.	04	14.9	95	96.04
LS	SD 5%	4.57	7	2.7	0	56.4		348.	0	5.	7	1.3	39	0.2	9	n.s.
C\	V %	29.8	3	59.	0	8.9		9.3	}	4.3	3	8.	2	3.2	2	0.5

Effect of Spreader / Sticker

No.	Tractment	% Lea	afsp	ot Daı	nage	Net \$/A	DIAGA	DWCT	T/A	%	%
NO.	Treatment	18-S	ер	7-8	Бер	Net 5/A	RWSA	RWST	I/A	SUC	CJP
2	Reguard	21.4	b	4.6	d	\$1,058	6289	220	28.6	15.0	96.0
3	Reguard	21.5	b	6.7	bcd	\$1,049	6332	221	28.7	15.1	96.0
	Diligence										
7	Liberate	22.6	b	8.1	abc	\$1,062	6216	221	28.1	15.0	96.1
6	LI 700	25.3	ab	6.1	cd	\$1,023	6081	216	27.8	14.8	95.9
9	No Sticker	25.5	ab	7.9	abc	\$1,071	6195	221	28.0	15.1	96.2
4	Coron 25-0-0	26.0	ab	9.8	а	\$1,008	6120	218	27.7	14.9	96.1
	Cide Winder										
1	Masterlock	26.3	ab	6.9	bcd	\$1,069	6402	220	28.6	14.9	96.0
5	Cide Winder	29.2	а	9.0	ab	\$1,046	6129	217	28.2	14.9	96.0
8	Wet-Sol 99	29.4	а	8.9	ab	\$997	5851	218	26.8	14.9	95.9
		_									
А١	/erage	25.2	6	7.	55	\$1,042.7	6179.4	219.0	28.04	14.95	96.04
LS	SD 5%	5.13	3	2.	74	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
C/	/ %	30.	7	54	1.9	8.1	8.4	3.3	7.2	2.9	0.6

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Reguard, Reguard + Diligence and Liberate appeared to improve fungicidal efficacy. LI 700, Coron 25-0-0, Masterlock, Cide Winder and Wet-Sol 99 did not improve fungicidal activity. None of the stickers extended the fungicidal activity of an EBDC treatment. Cercospora (*Cercospora beticola*) and Alternaria (*Alternaria alternata*) leafspot pressure was very high.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora beticola* and *Alternaria alternata* Leafspot Control in Sugarbeets Laker Agronomy Field, Elkton, MI - 2018 (Page 13 of 15)

No.	Program	Sticker	Treatment	# App	Date
1	Triazole	Masterlock	Inspire + Manzate	3	7/12, 8/7, 9/7
'	TTIAZOIE	Masteriock	Manzate	2	7/12, 8/1, 9/1 7/27, 8/28
2	Triazole	Reguard	Inspire + Manzate	3	7/12, 8/7, 9/7
_	11102010	rtoguaru	Manzate	2	7/27, 8/28
3	Triazole	Reguard + Diligence	Inspire + Manzate	3	7/12, 8/7, 9/7
		3	Manzate	2	7/27, 8/28
4	Triazole	Coron 25-0-0 + Cidewinder	Inspire + Manzate	3	7/12, 8/7, 9/7
			Manzate	2	7/27, 8/28
5	Triazole	Cidewinder	Inspire + Manzate	3	7/12, 8/7, 9/7
	-· ·	=00	Manzate	2	7/27, 8/28
6	Triazole	LI 700	Inspire + Manzate	3	7/12, 8/7, 9/7
7	Triazole	Liberate	Manzate Inspire + Manzate	3	7/27, 8/28 7/12, 8/7, 9/7
'	TTIAZOIE	Liberate	Manzate	2	7/12, 8/7, 9/7 7/27, 8/28
8	Triazole	Wet-Sol 99	Inspire + Manzate	3	7/12, 8/7, 9/7
	TTIQZOIG	VV Ct CO1 00	Manzate	2	7/27, 8/28
9	Triazole	No Sticker	Inspire + Manzate	3	7/12, 8/7, 9/7
			Manzate	2	7/27, 8/28
10	EBDC - (7 Day)	Masterlock	Manzate	7	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28
			Badge	1	9/4
11	EBDC - (7 Day)	Reguard	Manzate	7	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28
			Badge	1	9/4
12	EBDC - (7 Day)	Reguard + Diligence	Manzate	7	7/12, 7/19, 7/25, 8/1
			.		8/10, 8/18, 8/28
40	EDDO (7.D.)	005.00.0011	Badge	1	9/4
13	EBDC - (7 Day)	Coron 25-0-0 + Cidewinder	Manzate	7	7/12, 7/19, 7/25, 8/1
			Badge	1	8/10, 8/18, 8/28 9/4
14	EBDC - (7 Day)	Cidewinder	Manzate	7	7/12, 7/19, 7/25, 8/1
14	LBDC - (7 Day)	Cidewillder	Manzate	,	8/10, 8/18, 8/28
			Badge	1	9/4
15	EBDC - (7 Day)	LI 700	Manzate	7	7/12, 7/19, 7/25, 8/1
	2333 (, 5a))	2. 7 0 0	manzato	'	8/10, 8/18, 8/28
			Badge	1	9/4
16	EBDC - (7 Day)	Liberate	Manzate	7	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28
			Badge	1	9/4
17	EBDC - (7 Day)	Wet-Sol 99	Manzate	7	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28
			Badge	1	6/4
18	EBDC - (7 Day)	No Sticker	Manzate	7	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28
			Badge	1	9/4
19	EBDC - (10 Day)	Masterlock	Manzate	6	7/12, 7/23, 8/2, 8/13
20	EDDC (40 Dow)	Dogword	Monzoto	6	8/28, 9/7
20	EBDC - (10 Day)	Reguard	Manzate	6	7/12, 7/23, 8/2, 8/13
					8/28, 9/7

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora beticola* and *Alternaria alternata* Leafspot Control in Sugarbeets Laker Agronomy Field, Elkton, MI - 2018 (Page 14 of 15)

No.	Program	Sticker	Treatment	# App	Date
21	EBDC - (10 Day)	Reguard + Diligence	Manzate	6	7/12, 7/23, 8/2, 8/13
					8/28, 9/7
22	EBDC - (10 Day)	Coron 25-0-0 + Cidewinder	Manzate	6	7/12, 7/23, 8/2, 8/13
					8/28, 9/7
23	EBDC - (10 Day)	Cidewinder	Manzate	6	7/12, 7/23, 8/2, 8/13
Ш					8/28, 9/7
24	EBDC - (10 Day)	LI 700	Manzate	6	7/12, 7/23, 8/2, 8/13
					8/28, 9/7
25	EBDC - (10 Day)	Liberate	Manzate	6	7/12, 7/23, 8/2, 8/13
\Box				\Box	8/28, 9/7
26	EBDC - (10 Day)	Wet-Sol 99	Manzate	6	7/12, 7/23, 8/2, 8/13
	EDDO (10 D)	N 00 1			8/28, 9/7
27	EBDC - (10 Day)	No Sticker	Manzate	6	7/12, 7/23, 8/2, 8/13
	EDDO (40 D-)	Martalad	NA	-	8/28, 9/7
28	EBDC - (13 Day)	Masterlock	Manzate	5	7/12, 7/25, 8/7
	EDDO (40 Day)	Danward	Manager	-	8/20, 9/4
29	EBDC - (13 Day)	Reguard	Manzate	5	7/12, 7/25, 8/7
20	EBDC - (13 Day)	Doguard - Diliganas	Manzate	5	8/20, 9/4 7/12, 7/25, 8/7
30	EBDC - (13 Day)	Reguard + Diligence	Manzale	5	8/20, 9/4
31	EBDC - (13 Day)	Coron 25-0-0 + Cidewinder	Manzate	5	7/12, 7/25, 8/7
31	LDDO (10 Day)	COTOTI 20 0 0 1 Clacwillaci	Widifizato	Ŭ	8/20, 9/4
32	EBDC - (13 Day)	Cidewinder	Manzate	5	7/12, 7/25, 8/7
02					8/20, 9/4
33	EBDC - (13 Day)	LI 700	Manzate	5	7/12, 7/25, 8/7
	` ,				8/20, 9/4
34	EBDC - (13 Day)	Liberate	Manzate	5	7/12, 7/25, 8/7
					8/20, 9/4
35	EBDC - (13 Day)	Wet-Sol 99	Manzate	5	7/12, 7/25, 8/7
					8/20, 9/4
36	EBDC - (13 Day)	No Sticker	Manzate	5	7/12, 7/25, 8/7
					8/20, 9/4
37	Copper	Masterlock	Badge	8	7/12, 7/19, 7/25, 8/1
Ш					8/10, 8/18, 8/28, 9/4
38	Copper	Reguard	Badge	8	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28, 9/4
39	Copper	Reguard + Diligence	Badge	8	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28, 9/4
40	Copper	Coron 25-0-0 + Cidewinder	Badge	8	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28, 9/4

Evaluate Sticker / Spreaders added to Fungicides for *Cercospora beticola* and *Alternaria alternata* Leafspot Control in Sugarbeets Laker Agronomy Field, Elkton, MI - 2018 (Page 15 of 15)

No.	Program	Sticker	Treatment	# App	Date
41	Copper	Cidewinder	Badge	8	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28, 9/4
42	Copper	LI 700	Badge	8	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28, 9/4
43	Copper	Liberate	Badge	8	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28, 9/4
44	Copper	Wet-Sol 99	Badge	8	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28, 9/4
45	Copper	No Sticker	Badge	8	7/12, 7/19, 7/25, 8/1
					8/10, 8/18, 8/28, 9/4
46	Super Tin	Masterlock	Super Tin + Manzate	3	7/12, 8/4, 8/30
			Manzate	2	7/25, 8/18
47	Super Tin	Reguard	Super Tin + Manzate	3	7/12, 8/4, 8/30
			Manzate	2	7/25, 8/18
48	Super Tin	Reguard + Diligence	Super Tin + Manzate	3	7/12, 8/4, 8/30
			Manzate	2	7/25, 8/18
49	Super Tin	Coron 25-0-0 + Cidewinder	Super Tin + Manzate	3	7/12, 8/4, 8/30
			Manzate	2	7/25, 8/18
50	Super Tin	Cidewinder	Super Tin + Manzate	3	7/12, 8/4, 8/30
			Manzate	2	7/25, 8/18
51	Super Tin	LI 700	Super Tin + Manzate	3	7/12, 8/4, 8/30
			Manzate	2	7/25, 8/18
52	Super Tin	Liberate	Super Tin + Manzate	3	7/12, 8/4, 8/30
			Manzate	2	7/25, 8/18
53	Super Tin	Wet-Sol 99	Super Tin + Manzate	3	7/12, 8/4, 8/30
			Manzate	2	7/25, 8/18
54	Super Tin	No Sticker	Super Tin + Manzate	3	7/12, 8/4, 8/30
			Manzate	2	7/25, 8/18

Effect of Copper / Roundup Applications on Sugarbeet Leaf Injury

Laker Agronomy Field, Elkton, MI - 2018

Trial Quality: Good **Variety:** C-G333NT **Planted:** May 2

Harvested: Oct 17
Plots: 6 rows X 38 ft, 6 reps

Row Spacing: 22 inches

Soil Info: Loam

% OM: 2.5 **pH**: 6.9 **CEC**: 14.6 **P**: above opt **K**: above opt

Mn: high B: low

Added N: 135 lbs
Prev Crop: Soybeans

Rhizoc Level: Low Leafspot Control: N.A.

Problems:

Seeding Rate: 4.1 inches Rainfall: 21.6 inches

Beets/100 ft: ~162

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment*	Badge Applic Timing	Rate/A	Phyto	
1	Roundup P Max + AMS, no Badge	0 Day - July 10th	32 fl oz + 17 lbs.	2-Aug 4.2	g e
12	Badge SC + Masterlock	12 Days After Roundup	2 pt + 6.4 fl oz.	6.7	de
11	Badge SC + Masterlock	9 Days After Roundup	2 pt + 6.4 fl oz.	10.0	cde
10	Badge SC + Masterlock	6 Days After Roundup	2 pt + 6.4 fl oz.	12.5	bcd
7	Badge SC + Masterlock	12 Days Before Roundup	2 pt + 6.4 fl oz.	12.5	bcd
6	Badge SC + Masterlock	9 Days Before Roundup	2 pt + 6.4 fl oz.	12.5	bcd
5	Badge SC + Masterlock	6 Days Before Roundup	2 pt + 6.4 fl oz.	12.5	bcd
9	Badge SC + Masterlock	3 Days After Roundup	2 pt + 6.4 fl oz.	13.3	bcd
8	Badge SC + Masterlock	1 Day After Roundup	2 pt + 6.4 fl oz.	15.0	bcd
4	Badge SC + Masterlock	3 Days Before Roundup	2 pt + 6.4 fl oz.	15.8	abc
3	Badge SC + Masterlock	1 Day Before Roundup	2 pt + 6.4 fl oz.	17.5	ab
2	Badge SC + Masterlock	Same day as Roundup	2 pt + 6.4 fl oz.	21.7	а

Average	12.85
LSD: 5%	5.84
CV %	39.3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: This trial was conducted to determine the effect of Roundup and Badge applications on sugarbeet leaf injury. Badge was applied the same day as Roundup, 1, 3, 6, 9 and 12 days before Roundup and 1, 3, 6, 9 and 12 days after Roundup. AMS was included in the Roundup application and Masterlock was included in the Badge applications. In general, it appeared that Badge applications were safer to sugarbeets when the spray interval between Roundup and Badge was 6 or more days. Treatment rankings (safest to most injuries) were: Badge applied 12 days after Roundup, 9 days after, 6 days after, 12 days before, 9 days before, 6 days before, 3 days after, 1 day after, 3 days before, 1 day before and when Badge and Roundup were applied on the same day. It appeared that Badge applied after Roundup was safer than Badge applied before Roundup.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}All Treatments were sprayed with a maintenance spray of Badge @ 2 pt/A and Masterlock @ 6.4 fl oz/A on 8/18, 8/30 and 9/18.

Cercospora leaf spot: cultivar and fungicide program, Ridgetown, 2018

Ridgetown, Ontario, Canada

Cheryl Trueman, University of Guelph, Ridgetown Campus, Ridgetown, ON

Trial Quality: Good Variety: B-1399, C-RR059, C-G333NT Ridgetown, Ontario, Canada **Planted:** May 2 **Location:** Harvested: October 22 hand-held boom, CO₂ pressure **Application Method:** Plot Size: 2 rows x 23 feet **Application Water Volume:** 25 gal/A except where indicated

Row Spacing: 2.5 feet Reps: 4

Seeding Rate: 3.5 seeds/foot

Highlights:

- <u>Table 1</u>: Disease severity was high. Harvest delays due to poor weather resulted in a six-week gap from the time of the last fungicide application to harvest.
 - The MSC 'moderate' and 'susceptible' programs reduced AUDPS more than Manzate Pro-Stick programs. RWSA was higher for MSC 'susceptible' program than the nontreated control, Manzate Pro-Stick beginning at 40 DSVs, and Manzate Pro-Stick beginning at 50 DSVs with low water volume. These results differed from 2017 when we saw no advantage of the MSC programs over Manzate Pro-Stick programs. This may be because disease established earlier in 2018 and there was a delayed harvest.
 - The lowest number of fungicide applications was with Manzate Pro-Stick beginning at 40 DSVs, 50 DSVs (high and low water volume), and the MSC 'tolerant' program. Among these, the MSC 'tolerant' program and Manzate Pro-Stick beginning at 50 DSVs with high water volume were equivalent for AUDPS, yield, sugar, RWST, and RWSA. Thus, these programs may be adequate and use of appropriate water volume is beneficial. We also observed benefits from water volume (25 vs. 12 gpa) in 2017.
- <u>Table 2</u>: Interestingly, disease severity in C-RR059 was higher than B-1399 and C-G333NT. To the best of our knowledge, only Cercospora leaf spot was present in the trial, but through September and October disease intensity was high and so it is possible other pathogens were present. Sugar and RWST were also higher in C-RR059 than B-1399 and C-G333NT. This compensated for the beet yield reduction in C-RR059 and there was no difference in RWSA among cultivars. High sugar in C-RR059 was also noted in 2017.

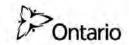
Acknowledgements: This project was funded in part through the Canadian Agricultural Partnership (the Partnership), a federal-provincial-territorial initiative. The Agricultural Adaptation Council assists in the delivery of the Partnership in Ontario. We also thank the Ontario Sugarbeet Growers' Association (OSGA) and the Michigan Sugar Company (MSC) for financial support.

Canadä

Table 1. Disease severity (% leaf area affected), area under the disease progress stairs (AUDPS), yield, and sugar in three sugar beet cultivars (B-1399, C-RR059, C-G333NT) grown under eight different fungicide schedules for management of Cercospora leaf spot, Ridgetown, ON, 2018.

	1 , 0	, ,				
Schedule (carrier volume) (#	Severity					_
applications)	(%) –		Yield			
	Sept 19	AUDPS ^a	(tons/acre)	Sugar (%)	RWST	RWSA
Unsprayed control	96 a	2819 a	29.4 b	13.6 d	193.8 e	5698 с
Manzate Pro-Stick, begin 50	52 b	1386 b	31.5 ab	14.3 c	206.4 d	6479 bc
DSV (12 gpa) (7)						
Manzate Pro-Stick, begin 50	43 bc	1160 bc	33.3 ab	14.7 bc	212.0 bcd	7029 ab
DSV (25 gpa) (7)						
Manzate Pro-Stick, begin 40	59 ab	1562 b	32.0 ab	14.4 c	208.1 cd	6640 bc
DSV (25 gpa) (7)						
Manzate Pro-Stick, begin 35	41 bc	1078 bc	34.1 ab	14.7 bc	212.9 bcd	7252 ab
DSV (25 gpa) (8)						
MSC 'tolerant cultivar'	25 cd	667 cd	34.5 ab	15.0 ab	217.7 abc	7487 ab
program (25 gpa) (7)						
MSC 'moderate cultivar'	16 de	435 de	35.0 a	15.3 ab	221.6 ab	7715 ab
program (25 gpa) (9)						
MSC 'susceptible cultivar'	11 e	301 e	35.1 a	15.5 a	226.4 a	7911 a
program (25 gpa) (11)						

a AUDPS = area under the disease progress stairs. A lower number is better. Manzate Pro-Stick programs began at the BEETcast™ DSV threshold indicated and were applied approximately every 14 days. MSC Canada-adapted programs were as follows: 'tolerant' 1) Proline + Manzate Pro-Stick at 50 DSV, 2) Manzate Pro-Stick at 45 DSV or 21 days, 3) Proline + Manzate Pro-Stick at 35 DSV or 14 days, 4) Manzate Pro-Stick at 35 DSV or 14 days, 5+) Manzate Pro-Stick 21 DSV or 10 days, 'moderate' 1) Proline + Manzate Pro-Stick at 40 DSV, 2) Manzate Pro-Stick at 40 DSV or 18 days, 3) Proline + Manzate Pro-Stick at 25 DSV or 14 days, 4) Manzate Pro-Stick at 25 DSV or 14 days, 5+) Manzate Pro-Stick at 8DSV or 10 days, 'susceptible' 1) Proline + Manzate Pro-Stick at 35 DSV, 2) Manzate Pro-Stick at 35 DSV or 15 days, 3) Proline + Manzate Pro-Stick at 20 DSV or 12 days, 4) Manzate Pro-Stick at 20 DSV or 12 days, 5+) Manzate Pro-Stick 15 DSV or 10 days. For MSC Canada-adapted programs, where both DSV and number of days are listed, the fungicide was applied according to the criteria that was reached first. Numbers in a column followed by the same letter are not significantly different at $P \le 0.05$, Tukey's HSD. Data from different cultivars was pooled because of no significant program x cultivar interaction.


Table 2. Area under the disease progress stairs (AUDPS), yield, and sugar in three sugar beet cultivars grown under eight different fungicide schedules for management of Cercospora leaf spot, Trial 1, Ridgetown, ON, 2018.

	Severity (%)		Yield			
Cultivar	– Sept 19	AUDPS ^a	(tons/acre)	% Sugar	RWST	RWSA
B-1399	32 b	847.35 b	34.0 a	14.6 b	211.1 b	7171 a
C-G333NT	30 b	831.59 b	34.7 a	14.3 c	206.0 с	7180 a
C-RR059	46 a	1218.65 a	30.7 b	15.2 a	220.0 a	6728 a

^a AUDPS = area under the disease progress stairs. A lower number is better. ^b Numbers in a column followed by the same letter are not significantly different at $P \le 0.05$, Tukey's adjustment. Data from three sugarbeet cultivars was pooled because of not program x cultivar interaction.

Cercospora leaf spot: deposition aids and carrier volume, Ridgetown, 2018

Ridgetown, Ontario, Canada

Cheryl Trueman, University of Guelph, Ridgetown Campus, Ridgetown, ON

Trial Quality: Very good Variety: C-RR059

Planted:May 2Location:Ridgetown, Ontario, CanadaHarvested:October 19Application Method:hand-held boom, CO2 pressure

Plot Size: 2 rows x 23 feet **Application Water Volume:** See table

Row Spacing: 2.5 feet Reps: 4

Seeding Rate: 3.5 seeds/foot

Highlights:

• Cercospora leaf spot severity was very high. Burn down was visible in all plots by early September but the trial was not harvested until October 19 due to poor weather.

- Programs that included Manzate Pro-Stick had lower disease severity and higher percent sugar than those
 treated with water only or Interlock only. The addition of Interlock to Manzate Pro-Stick did not reduce
 disease or increase sugar content more than applications of Manzate Pro-Stick alone.
- There was no effect of water volume on program response.

Table 1. Cercospora leaf spot severity (% leaf area affected), area under the disease progress stairs (AUDPS), yield, and sugar quality in 'C-RR059' managed using Manzate Pro-Stick fungicide with or without the deposition aid Interlock at different carrier volumes, Ridgetown, ON, 2018.

Factor ^a	Severity	AUDPS b	Yield	Sugar	RWST	RWSA
	(%) Oct 9		(tons/acre)	(%)		
Program						
Water	96 a ^c	5198 a	26.4 a	12.8 b	181 ab	4842 ab
Interlock	95 a	5366 a	25.9 a	12.5 b	176 b	4538 b
Manzate Pro-Stick	90 b	4504 b	30.7 a	13.4 a	190 a	5845 a
Manzate Pro-Stick + Interlock	90 b	4379 b	28.4 a	13.4 a	190 a	5426 ab
Carrier volume (gpa)						
12	93 a	4978 a	28.1 a	13.0 a	184 a	5158 a
25	92 a	4804 a	27.9 a	13.0 a	183 a	5214 a
38	92 a	4773 a	27.7 a	13.2 a	186 a	5194 a
50	94 a	4891 a	27.7 a	13.0 a	183 a	5085 a

^a Treatments were applied on June 19, July 3, 17, 31, Aug 14, 28, and Sept 14. ^b AUDPS = area under the disease progress stairs. A lower number is better. ^c Numbers in a column followed by the same letter are not significantly different at $P \le 0.05$, Tukey's adjustment. Data from different application carrier volumes and programs was pooled because the response for program was the same at different carrier volumes and response for carrier volume was the same with different programs.

Acknowledgements: This project was funded in part through the Canadian Agricultural Partnership (the Partnership), a federal-provincial-territorial initiative. The Agricultural Adaptation Council assists in the delivery of the Partnership in Ontario. We also thank the Ontario Sugarbeet Growers' Association (OSGA) and the Michigan Sugar Company (MSC) for financial support.

Michigan State University

AgBioResearch

Evaluation of foliar fungicide treatments to manage Cercospora leaf spot of sugar beet

Jaime Willbur and Chris Bloomingdale, Michigan State University

Location: Frankenmuth (SVREC)	Treatment Timings: 14 day interval starting at 45 DSV
Planting Dates: April 30, 2018	Pesticides: see table
Soil Type: Loam	O.M.: 5.0 pH: 7.5
Replicates: 4	Variety: C-G351NT

Summary: Mean CLS ratings were significantly different among treatments (P<0.0001). Programs 1-7 provided the greatest level of plant protection, with a mean disease severity ranging from 4.3-5.0, which is below the economic threshold of 6. Disease levels in programs 17-19 were not significantly different from the non-treated control, and had disease severity range of 7.5-8.0. Significant differences among program yields were detected (P=0.01). Though numerically many programs had mean yields greater than the control plot (18.7 t/A), programs 3, 5, and 8 were the only programs with mean yields significantly greater than the control. Significant differences were found among treatments for percent sugar (P<0.0001) and RWST values (P<0.001). The greatest percent sugar values resulted from programs 1, 3, 4, and 6, with a range of 13.9-14.6%. RWST values were greatest in programs 1-8, and had mean values of 191.9-205.3 lb sugar/ton of beet. The lowest percent sugar and RWST means resulted from programs 15-20. It is noted that lower than normal yields, percent sugar, and RWST values are most likely due to the early harvest and stand establishment issues. Overall, the top three performing programs were numbers 2, 3, and 8.

See next page for data table.

AgBioResearch

Evaluation of foliar fungicide treatments to manage Cercospora leaf spot of sugar beet

Jaime Willbur and Chris Bloomingdale, Michigan State University

Location: Frankenmuth (SVREC)	Treatment Timings: 14 day interval starting at 45 DSV
Planting Dates: April 30, 2018	Pesticides: see table
Soil Type: Loam	O.M.: 5.0 pH: 7.5
Replicates: 4	Variety: C-G351NT

Table 1. End of season disease severity and yield parameters from the tested fungicide programs.

No.	Treatment, Rate/A, and Timing ^a	Disease Severity ^{b,c}	Yield (t/A)	Sugar (%)	RWST
1	Minerva Duo (16 fl oz) ACDF + Super Tin (8 fl oz) BE + Koverall (1.5 lbs) BE	4.3 e	21.7 a-e	14.1 a-c	199.0 ab
2	Manzate Max (1.6 qt) ABCDEF + Inspire XT (7 fl oz) AC + Super Tin (8 fl oz) BD	4.5 de	22.0 a-e	13.8 b-d	192.3 a-d
3	Manzate Max (1.6 qt) ABCDEF + Acropolis (32 fl oz) AC + Super Tin (8 fl oz) BD	4.5 de	23.3 a	14.6 a	205.3 a
4	Inspire XT (7 fl oz) A + Manzate Max (1.6 qt) ABCDF + Super Tin (8 fl oz) C + Cuprofix Ultra (3 lb) E	4.7 de	22.5 a-d	13.9 a-d	193.6 a-c
5	Manzate Max (1.6 qt) ABCDEF + Inspire XT (7 fl oz) AC + MasterCop (1.5 pt) BCD + Super Tin (8 fl oz) BD	4.8 de	23.2 ab	13.6 b-f	191.9 a-e
6	Manzate Max (1.6 qt) ABCDEF + Inspire XT (7 fl oz) AC + AgriLife (1 qt) BCD + Super Tin (8 fl oz) BD	4.8 de	19.4 d-g	14.5 a-b	204.6 a
7	Manzate Max (1.6 qt) ABCDEF + Inspire XT (7 fl oz) AC + Badge SC (2 pt) BCD + Super Tin (8 fl oz) BD	5.0 de	22.4 a-e	13.8 b-e	192.2 a-d
8	Super Tin (8 fl oz) A + Manzate Max (1.6 qt) ACF + Dexter Max (2.1 lb) BD + Inspire XT (7 fl oz) C + Cuprofix Ultra (3 lb) E	5.3 d	23.25 b	13.8 b-e	192.6 a-d
9	Super Tin (8 fl oz) A + Manzate Max (1.6 qt) ABCDF + Inspire XT (7 fl oz) C + Cuprofix Ultra (3 lb) E	5.3 d	20.3 b-g	13.3 d-f	183.5 с-е
10	Inspire XT (7 fl oz) A + Manzate Max (1.6 qt) ACF + Dexter Max (2.1 lb) BD + Super Tin (8 fl oz) C + Cuprofix Ultra (3 lb) E	5.3 d	20.7 b-g	13.3 d-f	183.2 с-е
11	Brixen (21 fl oz) AD + Super Tin (8 fl oz) BE + Koverall (1.5 lb) BE + Minerva Duo (16 fl oz) CF	5.3 d	19.6 a-g	13.5 c-f	188.1 b-e
12	Minerva (13 fl oz) AD + Super Tin (8 fl oz) BE + Koverall (1.5 lb) BE + Minerva Duo (16 fl oz) CF	5.3 d	21.3 b-f	13.6 с-е	189.4 b-e
13	Manzate Max (1.6 qt) ABDF + Inspire XT (7 fl oz) AB + LifeGard (4.5 oz/100gal) CE + Super Tin (8 fl oz) D	6.3 c	21.9 a-e	13.1 e-g	180.8 d-f
14	Manzate Max (1.6 qt) A + Badge SC (2 pt) BCDEF	6.5 c	22.7 a-d	13.6 с-е	189.3 b-e
15	Manzate Max (1.6 qt) A + MasterCop (1.5 pt) BCDEF	7.0 bc	19.1 e-g	12.5 gh	169.1 fg
16	Manzate Max (1.6 qt) A + AgriLife (1 qt) BCDEF	7.0 bc	18.3 fg	12.2 h	165.0 g
17	Double Nickel (1 qt) ABCDEF + Kocide 3000-O (1.5 lb) ABCDEF	7.5 ab	20.2 b-g	12.9 f-h	177.1 e-g
18	Experimental (1% v/v) ABCDEF	7.8 ab	19.5 d-g	12.2 h	166.7 g
19	LifeGard (4.5 oz/100 gal) ABCDEF	7.8 ab	17.6 g	12.4 gh	169.7 fg
20	Non-Treated Control	8.0 a	18.7 c-g	12.3 h	166.3 g

^a Application letters code for the following dates: A=20 Jun, B=3 Jul, C=17 Jul, D=31 Jul, E=14 Aug, F=30 Aug.

^b Disease severity based on a 0-10 scale with the following breakdown of leaf area: 1=0.1% (1-5 spots/leaf), 2=0.35% (6-12 spots/leaf), 3=0.75% (13-25 spots/leaf), 4=1.5% (26-50 spots/leaf), 5=2.5% (51-75 spots/leaf), 6=3%, 7=6%, 8=12% 9=25%, 10=50%.

^c Column values followed by the same letter are not significantly different based on Fisher's Protected LSD (α =0.05); if no letter, then the effect is not significant

Sugarbeet (Beta vulgaris)
Cercospora leaf spot; Cercospora beticola

N. Rosenzweig, L. Hanson and P. Somohano Plant, Soil and Microbial Sciences Michigan State University East Lansing, MI 48824 C. Guza and J. Stewart Michigan Sugar Co. Bay City, MI 48706

In-vitro fungicide sensitivity of Cercospora beticola isolates from sugarbeet 2018

Cercospora leaf spot (CLS) caused by *Cercospora beticola* is the most serious foliar disease of sugarbeet in Michigan and when conditions are conducive can cause yield losses. The need to preserve the usefulness of existing fungicide chemistries has been particularly important since the development of fungicide insensitivity issues in CLS. Additionally, from 2013-2017, there has been a steady increase in frequency of *C. beticola* isolates with triazole and QoI resistance collected from commercial production fields in Michigan and Ontario, CA. Major issues have developed over the past few years with the introduction of effective fungicides for control of this disease related to fungicide application timing and development of insensitivity to established and novel fungicides in *C. beticola* populations. This has led to the increase in the development of insensitivity to some fungicides previously recommended for CLS management, most notably thiophanate-methyl, benzimidazoles and QoIs. Therefore, this project continued to monitor fungicide sensitivity of pathogen populations to inform the development of resistant management and fungicide use recommendations.

Sample collection and geographical origin of isolates: Isolates of *C. beticola* were collected from leaves with symptoms of CLS sampled from sugarbeet fields in east-central Michigan during Sep and Oct in 2018. Samples of up to 20 leaves from throughout a selection of sugarbeet production fields in Michigan and Ontario CA were used in sensitivity testing. Isolates of *C. beticola* were recovered from infected leaf tissue from multiple field locations using established methods. Pure cultures isolated from individual CLS lesions were obtained to determine sensitivity to each fungicide described below. Representative lesions were randomly selected from sugarbeet leaves, surfaced sterilized, and placed into plastic bags with moist paper towel to maintain humidity near 100 %, and placed under fluorescent light with an 8-h photo-period at 24°C for 7 d to promote sporulation. Hyphal tipping was used to isolate pure cultures of *C. beticola* onto clarified V8 (CV8) media amended with CaCO₃ (900 ml of distilled H₂O, 100 ml of CV8, 15 g of Bacto Agar, and 1.5 g of CaCO₃) for subsequent fungicide sensitivity assays.

In vitro fungicide sensitivity of *Cercospora beticola* by dilution gradient: Difenoconazole [DFZ; Inspire®, (Group 3)], fenbuconazole [FBZ; Enable®, (Group 3)], flutriafol [FTL; Topguard®, (Group 3)], prothioconazole [PTZ; Proline®, (Group 3)], tetraconazole [TTZ; Eminent®125 SL, (Group 3)], pyraclostrobin [PYR; Headline® 2.08SC, (Group 11)], thiophanate-methyl [TPN; Topsin® 4.5FL (Group 1)] and triphenyltin OH [TPT; Super Tin® 80WP (Group 30)] and stock solutions of 10,000 mg/liter of each fungicide were prepared by dissolving commercial-grade fungicides in a sterile solvent. 50 ml of CV8 agar was poured into each dish, to form a layer of CV8 agar with a constant volume, thus when a stock solution is added to the agar, it results in a gradient from 0 to 1000 mg/liter across the agar surface. A method using a spiral gradient plater was used to determine effective concentration in inhibiting growth by 50% (EC50). Pure cultures of *C. beticola* were prepared as described above. Conidial suspensions were prepared by flooding colony Petri dishes with 1 mL distilled water and scraping the conidia free from the surface with a rubber policeman. The conidial suspension (10 μ L) was spread across the fungicide gradient plate from edge to center. Isolates were incubated for 14 d, at 24°C (two replications). The point coordinates at which the colonies start and end was recorded and entered into a software program, which calculates the EC50 for each isolate for each of the fungicides.

Results

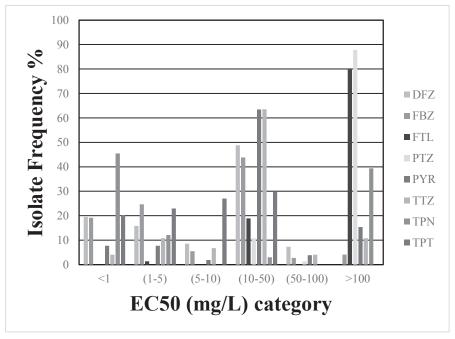

The mean EC₅₀ values were estimated for each of the fungicides listed above. In 2018 a total of 82, 73, 74, 74, 74, 53, 34 and 74 isolates were screened against the fungicides DFZ, FBZ, FTL, PTZ, TTZ, PYR, TPN and TPT respectively (Table 1). For DFZ, FBZ, FTL, PTZ, TTZ, PYR, TPN and TPT the mean EC₅₀ values were 21.6, 23.6, 118.0, 122.7, 40.6, 44.4, 54.1 and 8.7 respectively in 2018 (Table 1). The distribution of *C. beticola* isolate sensitivity in EC₅₀ values (mg/L) for all fungicides tested in 2018 ranged from <1 to >100 (Tables 1 and Figure 1).

Table 1. Comparison of mean effective concentration in growth by 50% (EC₅₀) for isolates of *Cercospora beticola* isolates to DFZ, FBZ, FTL, PTZ, TTZ, PYR, TPN and TPT 2018.

			$EC_{50} (mg/L)^a$			
Active ingredient	FRAC ^b code	Total # of isolates	Mean (s.e.) ^c	Minimum	Maximum	
Difenoconazole (DFZ)	3	82	21.6 ± 2.4	0.6	99.0	
Fenbuconazole (FBZ)	3	73	23.6 ± 3.4	0.7	133.6	
Flutriafol (FTL)	3	74	118.0 ± 4.4	4.1	137.8	
Prothioconazole (PTZ)	3	74	122.7 ± 3.3	40.3	132.7	
Tetraconazole (TTZ)	3	74	40.6 ± 5.0	0.7	136.5	
Pyraclostrobin (PYR)	11	53	44.4 ± 5.5	0.6	128.0	
Thiophanate-methyl (TPN)	1	34	54.1 ± 11.3	0.8	133.0	
Triphenyltin OH (TPT)	30	74	8.7 ± 1.8	0.7	39.1	

^a EC50 values determined for two replications based on mean effective concentration in growth by 50% by spiral gradient dilution method.

^c s.e.=standard error of the mean.

Figure 1. Frequency distributions of in vitro sensitivity of *Alternaria* spp. isolates collected in 2018 from sugarbeet leaves. Sensitivity expressed as 50% inhibition of fungal growth (EC₅₀) in vitro, fungicide concentration estimate based determined by the spiral gradient dilution method. Difenoconazole=DFZ; fenbuconazole=FBZ; flutriafol=FTL; prothioconazole=PTZ; tetraconazole=TTZ; pyraclostrobin=PYR, Thiophanate-methyl=TPN and triphenyltin OH=TPT.

^b FRAC=Fungicide Resistance Action Committee group name based on chemical relatedness and mode of action

Sugarbeet (*Beta vulgaris*) **Alternaria leaf spot**; *Alternaria* spp.

N. Rosenzweig, L. Hanson and P. Somohano Plant, Soil and Microbial Sciences Michigan State University East Lansing, MI 48824 C. Guza and J. Stewart Michigan Sugar Co. Bay City, MI 48706

In-vitro fungicide sensitivity distributions of Alternaria spp. isolates from sugarbeet 2018

Alternaria leaf spot (ALS) disease caused by *Alternaria* spp. in the *alternata* and *tenuis* speciesgroup is common wherever sugarbeet is grown. Infection by *Alternaria* spp. has historically been considered a minor pathogen in sugarbeet production in the US, due to its more opportunistic or secondary nature. During the 2016 growing season, increased incidence and severity of ALS was observed in MI at levels high enough to have the potential to cause yield loss due to defoliation. From 2015 to 2017 *Alternaria* spp. with higher levels of insensitivity to many classes of fungicides were recovered from commercial production areas in Michigan. Isolates of *Alternaria* spp. were tolerant to the quinone outside inhibitor (QoI), triazole, triphenyltin OH and prothioconazole fungicides. Therefore, sensitivity monitoring of pathogen populations to inform the development of fungicide resistant management and fungicide use recommendations is essential.

Sample collection and geographical origin of isolates: Isolates of *Alternaria* spp. were collected from leaves with symptoms of ALS sampled from sugarbeet fields in east-central Michigan during Sep and Oct in 2018. Samples of up to 20 leaves from throughout a selection of sugarbeet production fields in Michigan and Ontario, CA were used in sensitivity testing. Isolates of *Alternaria* spp. were recovered from infected leaf tissue from multiple field locations using standard methods for the program. Monoconidial isolates from individual ALS lesions were obtained to determine sensitivity to each fungicide described below. From each sugarbeet leaf representative lesions were cut with a cork borer; the lesions were chosen from similar sizes and in similar stages of sporulation and surfaced sterilized. All leaf disks derived from a particular sampling site were placed onto water agar media (WA) amended with streptomycin and CaCO₃ (1000 ml of distilled H₂O, 15 g of Bacto Agar, and 1.5 g of CaCO₃) for sporulation induction and positive identification. From individual lesions one conidium of *Alternaria* spp. was transferred to clarified V-8 (CV8) media amended with streptomycin and CaCO₃ (900 ml of distilled H₂O, 100 ml of CV8, 15 g of Bacto Agar, and 1.5 g of CaCO₃) for subsequent fungicide sensitivity assays.

In vitro fungicide sensitivity of *Alternaria spp.* by dilution gradient: Difenoconazole [DFZ; Inspire®, (Group 3)], fenbuconazole [FBZ; Enable®, (Group 3)], flutriafol [FTL; Topguard®, (Group 3)], prothioconazole [PTZ; Proline®, (Group 3)], tetraconazole [TTZ; Eminent®125 SL, (Group 3)], pyraclostrobin [PYR; Headline® 2.08SC, (Group 11)] and triphenyltin OH [TPT; Super Tin® 80WP (Group 30)] and stock solutions of 10,000 mg/liter of each fungicide were prepared by dissolving commercial-grade fungicides in a sterile solvent. 50 ml of CV8 agar was poured into each dish, to form a layer of CV8 agar with a constant volume, thus when a stock solution is added to the agar, it results in a gradient from 0 to 1000 mg/liter across the agar surface. A method using a spiral gradient plater was used to determine effective concentration in inhibiting growth by 50% (EC $_{50}$). Pure cultures of *Alternaria* spp. were prepared as described above. Conidial suspensions are prepared by flooding colony Petri dishes with 1 mL distilled water and scraping the conidia free from the surface with a rubber policeman. The conidial suspension (10 μ L) was spread across the fungicide gradient plate from edge to center. Isolates were incubated for 14 d, at 24°C (two replications). The point coordinates at which the colonies start and end was recorded and entered into a software program, which calculates the EC $_{50}$ for each isolate and fungicide.

Results

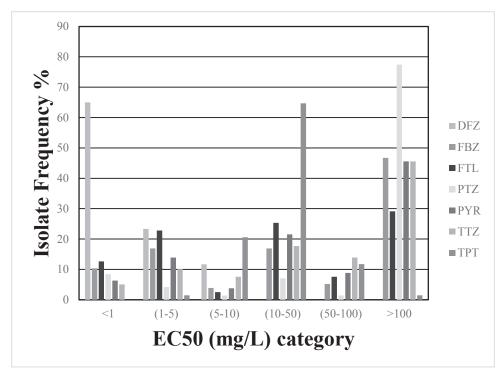

The mean EC_{50} values were estimated for each of the fungicides listed above. A total of 60, 77, 79, 73, 79, 79 and 68 isolates were screened against the fungicides DFZ, FBZ, FTL, PTZ, TTZ, PYR, and TPT respectively (Table 1). For DFZ, FBZ, FTL, PTZ, TTZ, PYR, and TPT the mean EC_{50} values were 1.7, 71.8, 55.1, 105.3, 78.7, 71.0 and 27.2 respectively (Table 1). The distribution of *Alternaria* spp. isolate sensitivity in EC_{50} values (mg/L) for all fungicides tested ranged from <1 to >100 (Table 1 and Figure 1).

Table 1. Comparison of mean effective concentration in growth by 50% (EC₅₀) for isolates of *Alternaria* spp. isolates to DFZ, FBZ, FTL, PTZ, TTZ, PYR, and TPT 2018.

]	$\mathrm{EC}_{50}(\mathrm{mg/L})^{\mathrm{a}}$	
Active ingredient	FRAC ^b code	Total # of isolates	Mean (s.e.) ^c	Minimum	Maximum
Difenoconazole (DFZ)	3	60	1.7 ± 0.3	0.6	8.95
Fenbuconazole (FBZ)	3	77	71.8 ± 7.8	0.7	133.6
Flutriafol (FTL)	3	79	55.1 ± 6.4	0.8	137.8
Prothioconazole (PTZ)	3	73	105.3 ± 7.0	0.7	132.7
Tetraconazole (TTZ)	3	79	78.7 ± 7.2	0.8	136.5
Pyraclostrobin (PYR)	11	79	71.0 ± 7.3	0.6	128.0
Triphenyltin OH (TPT)	30	68	27.2 ± 3.4	3.4	130.2

^a EC50 values determined for two replications based on mean effective concentration in growth by 50% by spiral gradient dilution method.

^c s.e.=standard error of the mean.

Figure 1. Frequency distributions of in vitro sensitivity of *Alternaria* spp. isolates collected in 2018 from sugarbeet leaves. Sensitivity expressed as 50% inhibition of fungal growth (EC₅₀) in vitro, fungicide concentration estimate based determined by the spiral gradient dilution method. Difenoconazole=DFZ; fenbuconazole=FBZ; flutriafol=FTL; prothioconazole=PTZ; tetraconazole=TTZ; pyraclostrobin=PYR and triphenyltin OH=TPT.

^b FRAC=Fungicide Resistance Action Committee group name based on chemical relatedness and mode of action

MICHIGAN SUGAR Bebow, Breckenridge, MI - 2018

(Page 1 of 10)

Trial Quality: Fair-Good Variety: SX-1245N Planted: May 8 Harvested: Sept 14

Harvested: Sept 14 Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches % OM: 2.7 pH: 6.4 CEC: 13.3 P: above opt K: above opt Mn: high B: med Added N: 140 lbs

Soil Info: Sandy Clay Loam

Rhizoc Level: Very High Cerc Control: Good Problems: Too much disease

Seeding Rate: 4.5 inches
Rainfall: 20.5 inches

Prev Crop: Soybeans

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa- Foliar 7" band Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

				Dea	ad			_		. [•	gor				
No.	Treatment	Rate /Acre	App. Timing	Bee	ts /	Net \$	/A	Beets	s / 100	Oft		ing* 10	RW	SA	RW	ST
			Tilling	100	Ft			Early	La	ite		g 3				
3	Systiva	5 g ai	ST	23.9	е	\$891	a-d	250	187	abc	7.3	ab	4796	ab	207	ab
	Quadris	10 fl oz	In-Fur													
	Quadris	14.25 fl oz	8 If													
1	Systiva	5 g ai	ST	26.4	е	\$912	a-d	250	181	a-d	7.3	ab	4927	ab	210	ab
	Quadris	10 fl oz	In-Fur													
9	Vibrance	2 g ai	ST	33.1	е	\$1,000	ab	261	195	ab	7.5	а	5391	а	217	а
	Quadris	10 fl oz	In-Fur													
15	Metlock	0.36 ml	ST	35.3	е	\$836	cd	259	185	abc	7.4	а	4532	b	213	ab
	Rizolex	5 g ai	ST													
	Kabina	7 g ai	ST													
	Quadris	10 fl oz	In-Fur													
	Quadris	14.25 fl oz	8 lf													
5	Kabina	14 g ai	ST	39.1	de	\$940	abc	263	199	а	7.2	a-d	4998	ab	214	ab
ш	Quadris	10 fl oz	In-Fur													
2	Systiva	5 g ai	ST	47.8	cde	\$1,006	а	256	168	a-d	7.3	abc	5372	а	209	ab
	Quadris	14.25 fl oz	8 If													
11	Vibrance	2 g ai	ST	49.9	cde	\$866	cd	249	173	a-d	7.3	ab	4766	ab	216	ab
	Quadris	10 fl oz	In-Fur													
ш	Quadris	14.25 fl oz	8 If													
13	Metlock	0.36 ml	ST	50.9	cde	\$864	cd	257	181	a-d	7.3	ab	4735	ab	210	ab
	Rizolex	5 g ai	ST													
	Kabina	7 g ai	ST													
	Quadris	10 fl oz	In-Fur					0=1		_	_					
17	No Seed Trt	40.6		56.1	b-e	\$865	cd	271	187	abc	7.1	a-d	4572	b	215	ab
	Quadris	10 fl oz	In-Fur	50 -		Φ00=		057	45.4		7.0		4500		0/10	
7	Kabina	14 g ai	ST	56.7	b-e	\$837	cd	257	174	a-d	7.0	bcd	4506	b	213	ab
	Quadris	10 fl oz	In-Fur													
40	Quadris	14.25 fl oz	8 If	F7 7	l	#000		004	400		7.4		4000	- 1-	047	
18	No Seed Trt	44 OF fl a =	0 14	57.7	b-e	\$920	a-d	264	180	a-d	7.1	a-d	4886	ab	217	а
	Quadris	14.25 fl oz	8 If													

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*} Vigor: 0 to 10 ratings, 10 is the best

MICHIGAN SUGAR Bebow, Breckenridge, MI - 2018

(Page 2 of 10)

No.	Treatment	Rate /Acre	App.	Dea Beet		Net	\$/A	Beets	/ 100ft	t	Vig Rati	ing*	RWS	SA	RW	ST
		11000771010	Timing	100	Ft		Ψ	Early	Late	е	0- ²			<i>7</i> .		
14	Metlock Rizolex Kabina Quadris	0.36 ml 5 g ai 7 g ai 14.25 fl oz	ST ST ST 8 If	59.2	b-e	\$880	bcd	277	160	a-d	7.3	ab	4820	ab	213	ab
19	No Seed Trt Quadris Quadris	10 fl oz 14.25 fl oz	In-Fur 8 If	62.1	b-e	\$817	cd	268	184 a	abc	7.0	bcd	4348	b	205	ab
12	Vibrance No Quadris	2 g ai	ST	62.3	b-e	\$860	cd	257	151	cd	7.2	a-d	4688	b	206	ab
16	Metlock Rizolex Kabina No Quadris	0.36 ml 5 g ai 7 g ai	ST ST ST	76.6	bcd	\$885	a-d	269	173	a-d	7.1	a-d	4726	ab	205	ab
4	Systiva No Quadris	5 g ai	ST	77.4	bc	\$870	cd	250	156 I	bcd	7.2	a-d	4684	b	205	b
10	Vibrance Quadris	2 g ai 14.25 fl oz	ST 8 If	81.9	bc	\$842	cd	273	151	cd	7.1	a-d	4508	b	205	ab
6	Kabina Quadris	14 g ai 14.25 fl oz	ST 8 If	85.5	bc	\$833	cd	268	152	cd	6.9	cd	4534	b	208	ab
8	Kabina No Quadris	14 g ai	ST	89.9	b	\$804	d	266	151	cd	6.8	d	4361	b	210	ab
20	No Quadris No Seed Trt			124.7	а	\$626	е	271	140	d	6.4	е	3291	С	193	С
Δνισ	erage			59.8	21	\$867	7.8	261.9	171.	1	7.	14	4672	2.0	209	16
	D 5%			32.0		108		n.s.	34.4		0.3		550.2		9.7	
CV				46.		10		7.4	17.5		3.		10.		4.	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Vigor: 0 to 10 ratings, 10 is the best

Comments: Systiva, Vibrance, Tri-pak (Metlock = Rizolex + Kabina 7 g) and Kabina (seed treatments for Rhizoctonia) were applied with and without Quadris in this small plot replicated trial. The Rhizoctonia (*Rhizoctonia solani* AG 2-2 IIIB) level was very high. There were no significant differences between the seed treatments with respect to disease control or sugarbeet stand, however, all of the seed treatments were improvements over the untreated check plots. Performance was improved with the addition of Quadris, especially when applied In-furrow at planting. The sugarbeet variety planted is susceptible to Rhizoctonia.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

MICHIGAN SUGAR Bebow, Breckenridge, MI - 2018

(Page 3 of 10)

Effect of Seed Treatments (avg. of all Quadris applic.)

No.	Treatment	Rate /Acre	App. Timing			Beet	s / 100ft	i	Vig Rati 0-1	ng*	RWSA		RWST			
				100	Ft			Early	Late	Э	Avg	g 3				
1	Quadris	10 fl oz	In Fur	41.1	С	\$916	а	260.5	188.5	а	7.3	а	4925	а	213	а
3	Quadris	10 fl oz	In Fur	45.6	С	\$849	bc	256.9	180.4	а	7.2	а	4590	bc	211	а
	Quadris	14.25 fl oz	8 If													
2	Quadris	14.25 fl oz	8 If	66.4	b	\$896	ab	267.6	162.2	b	7.1	а	4824	ab	210	а
4	No Quadris			86.2	а	\$809	С	262.7	154.3	b	7.0	b	4350	С	204	b
Av	erage			59.8	31	\$867	7.8	261.91	171.3	36	7.1	14	4672	2.0	209	.6
LS	D 5 %			14.3	36	48.	3	9.31	15.4	5	0.1	14	253	.9	4.4	4
CV	′ %			46.	7	10.	8	6.9	17.5	5	3.	9	10.	6	4.0)

Effect of Quadris Applic. (avg. of all Seed Treatments)

No.	Treatment	Rate /Acre	App. Timing	Dead Beets / Net \$/A 100 Ft		\$/A	Beets	s / 100ft	0-10		ting*		RWST	
				100	Ft			Early	Late	Avg	3			
1	Systiva	5 g ai	ST	43.9	С	\$920	а	251.6	173.2	7.3	а	4945	а	208
4	Metlock	.36 ml	ST	55.5	bc	\$866	abc	265.6	174.7	7.3	а	4703	ab	210
	Rizolex	5 g ai	ST											
	Kabina	7 g ai	ST											
3	Vibrance	2 g ai	ST	56.8	abc	\$892	ab	260.3	167.4	7.3	а	4838	ab	211
2	Kabina	14 g ai	ST	67.8	ab	\$853	bc	263.7	168.9	7.0	b	4600	bc	211
5	No Seed Trt			75.2	а	\$807	С	268.4	172.7	6.9	b	4274	С	208
												_		
Ave	erage			59.8	31	\$867	7.8	261.91	171.35	7.1	4	4672	2.0	209.6
LS	D 5 %		·	19.	14	62.	6	n.s.	n.s.	0.2	21	329	.3	n.s.
CV	%		·	53.	2	12.	0	9.9	19.0	4.	9	11.	7	3.9

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Vigor: 0 to 10 ratings, 10 is the best

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

MICHIGAN SUGAR Shaffner, Freeland, MI - 2018

(Page 4 of 10)

Trial Quality: Fair Variety: SX-1245N Planted: May 9 Harvested: Sept 21

Plots: 6 rows X 38 ft, 4 reps Added N: 135 lbs Row Spacing: 22 inches

Soil Info: Loam % OM: 2.6 pH: 6.2 CEC: 13.4 P: above opt K: above opt Mn: high B: low

Rhizoc Level: Low Cerc Control: Good Problems: Low disease Seeding Rate: 4.5 inches Rainfall: 12.8 inches

Prev Crop: Corn

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa- Foliar 7" band Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Treatment	Rate /Acre	App. Timing	Dead Beets /	Net \$/A		Beets	s / 100f	ft	Vigor Rating* 0-10	RWSA	RWST
				100 Ft		Ea	rly	La	ate	Avg 2		
3	Systiva	5 g ai	ST	0.8	\$1,495	222	a-d	213	abc	8.3	9268	242
	Quadris	10 fl oz	In-Fur									
7	Quadris Kabina	14.25 fl oz 14 g ai	8 If ST	1.7	\$1,457	221	a-d	213	abc	7.9	9048	246
_ ′	Quadris	14 g ai 10 fl oz	In-Fur	1.7	\$1,437	221	a-u	213	abc	7.9	9040	240
	Quadris	14.25 fl oz	8 lf									
15	Metlock	0.36 ml	ST	1.8	\$1,451	241	ab	233	а	8.0	9087	246
	Rizolex	5 g ai	ST									
	Kabina	7 g ai	ST									
	Quadris	10 fl oz	In-Fur									
ш	Quadris	14.25 fl oz	8 If									
8	Kabina	14 g ai	ST	1.8	\$1,432	228	a-d	221	abc	7.8	8906	250
4.4	No Quadris	0.001	O.T.	0.0	Φ4 5 40	000		04.4	-1	0.4	0005	244
14	Metlock Rizolex	0.36 ml 5 g ai	ST ST	2.3	\$1,512	222	a-d	214	abc	8.1	9385	244
	Kabina	7 g ai	ST									
	Quadris	14.25 fl oz	8 lf									
11	Vibrance	2 g ai	ST	2.3	\$1,498	237	ab	229	ab	8.1	9348	252
	Quadris	10 fl oz	In-Fur									
	Quadris	14.25 fl oz	8 If									
4	Systiva	5 g ai	ST	2.3	\$1,547	221	a-d	214	abc	8.0	9584	252
\Box	No Quadris											211
16	Metlock	0.36 ml	ST	2.5	\$1,473	240	ab	231	ab	8.2	9141	244
	Rizolex	5 g ai	ST									
	Kabina No Quadris	7 g ai	ST									
2	Systiva	5 g ai	ST	2.5	\$1,522	203	cd	193	С	7.8	9429	249
	Quadris	14.25 fl oz	8 If	2.0	Ψ1,022	200	ou			7.0	0420	210
13	Metlock	0.36 ml	ST	2.8	\$1,535	230	a-d	223	abc	8.2	9607	252
	Rizolex	5 g ai	ST									
	Kabina	7 g ai	ST									
	Quadris	10 fl oz	In-Fur									

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Vigor: 0 to 10 ratings, 10 is the best

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

(Page 5 of 10)

			App.	Dead		Beets	/ 100ft	Vigor Rating*		
No.	Treatment	Rate /Acre	Timing	Beets /	Net \$/A			0-10	RWSA	RWST
				100 Ft		Early	Late	Avg 3		
10	Vibrance Quadris	2 g ai 14.25 fl oz	ST 8 lf	2.8	\$1,463	223 a-d	213 abc	7.7	9128	240
19	No Seed Trt Quadris Quadris	10 fl oz 14.25 fl oz	In-Fur 8 If	3.0	\$1,452	242 a	236 a	7.9	8936	242
17	No Seed Trt Quadris	10 fl oz	In-Fur	3.0	\$1,501	232 abc	223 abc	8.0	9234	247
12	Vibrance No Quadris	2 g ai	ST	3.5	\$1,498	228 a-d	219 abc	7.9	9342	250
5	Kabina Quadris	14 g ai 10 fl oz	ST In-Fur	3.5	\$1,484	224 a-d	216 abc	7.6	9210	248
1	Systiva Quadris	5 g ai 10 fl oz	ST In-Fur	3.5	\$1,515	201 d	194 c	7.7	9386	244
9	Vibrance Quadris	2 g ai 10 fl oz	ST In-Fur	3.7	\$1,463	218 a-d	210 abc	7.7	9132	247
6	Kabina Quadris	14 g ai 14.25 fl oz	ST 8 lf	4.0	\$1,453	211 bcd	201 bc	7.8	9034	246
20	No Seed Trt No Quadris			4.2	\$1,420	239 ab	229 ab	7.5	8734	237
18	No Seed Trt Quadris	14.25 fl oz	8 If	4.7	\$1,393	230 a-d	213 abc	7.4	8570	243
Δ.,,	, ro do			2.84	¢4 470 0	225.6	217.0	7.00	0175 5	246.1
	erage D 5%			2.04 n.s.	\$1,478.2 n.s.	25.0	24.9	7.88 n.s.	9175.5 n.s.	n.s.
CV				65.6	5.6	9.7	10.0	6.8	5.7	4.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Vigor: 0 to 10 ratings, 10 is the best

Comments: Systiva, Vibrance, Tri-Pak (Metlock = Rizolex + Kabina 7 g) and Kabina (seed treatments for Rhizoctonia) were applied with and without Quadris in this small plot replicated trial. The Rhizoctonia (Rhizoctonia solani AG 2-2 IIIB) level was too low to obtain valid disease ratings. Systiva appeared to reduce sugarbeet stand slightly. The variety planted is susceptible to Rhizoctonia.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

MICHIGAN SUGAR Shaffner, Freeland, MI - 2018

(Page 6 of 10)

Effect of Quadris Applic. (avg. of all Seed Treatments)

No.	Treatment	Rate /Acre	App. Timing	Dead Beets / Net \$/A		В	Beets / 100ft			Vigor Rating* 0- 10	RWSA	RWST	
				100	Ft		Ear	ly	Late		Avg 3		
3	Quadris	10 fl oz	In Fur	1.9	b	\$1,471	233	а	225	а	8.0	9137	246
	Quadris	14.25 fl oz	8 If										
4	No Quadris			2.9	ab	\$1,474	231	ab	223	ab	7.9	9142	247
1	Quadris	10 fl oz	In Fur	3.3	а	\$1,500	221	bc	213	bc	7.8	9314	248
2	Quadris	14.25 f oz	8 If	3.3	а	\$1,468	218	С	207	С	7.8	9109	244
Ave	erage			2.8	5	\$1,478.2	225.6		217.0		7.88	9175.5	246.1
LS	LSD 5 %			0.96		n.s.	11.2		11.1		n.s.	n.s.	n.s.
CV	′ %			65.6		5.7	9.7		10.0		6.8	5.7	4.4

Effect of Seed Treatments (avg. of all Quadris applic.)

No.	Treatment	Rate /Acre	App. Timing	Dea Beet		Net \$/A		Beets / 100ft			Vigor Rating* 0- 10		RWSA		RWST	
				100	Ft				Early		Late		/g 3			
1	Systiva	5 g ai	ST	2.3	b	\$1,520	а	212	С	204	С	7.9	ab	9417	а	247
4	Metlock	0.36 ml	ST	2.4	b	\$1,493	ab	233	а	225	а	8.1	а	9305	ab	247
	Rizolex	5 g ai	ST													
	Kabina	7 g ai	ST													
2	Kabina	14 g ai	ST	2.8	b	\$1,457	bc	221	bc	213	bc	7.8	b	9050	bc	247
3	Vibrance	2 g ai	ST	3.1	ab	\$1,481	abc	226	ab	218	ab	7.8	b	9238	ab	248
5	No Seed Trt			3.7	а	\$1,441	С	236	а	225	а	7.7	b	8869	С	242
Ave	erage			2.8	6	\$1,478	3.2	225	5.6	217	.0	7.	.88	9175	5.5	246.1
LSD 5 %			0.87		45.3		11.3		11.5		0.27		279	.0	n.s.	
CV	%			50.	9	5.1		8.3	3	8.8	3	5	5.6	5.0)	4.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Vigor: 0 to 10 ratings, 10 is best

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

MICHIGAN SUGAR Blumfield, Richville, MI - 2018

(Page 7 of 10)

Trial Quality: Fair Variety: C-G333N Planted: April 30 Harvested: Sept 25 Plots: 6 rows X 38 ft, 4 reps Soil Info: Sandy Clay Loam % OM: 2.1 pH: 7.9 CEC: 19.7 P: above opt K: above opt Mn: high B: med Added N: 135 lbs

Rhizoc Level: Low Cerc Control: Good Problems: Lack of disease Seeding Rate: 4.5 inches Rainfall: 21.3 inches

Row Spacing: 22 inches

Prev Crop: radish

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa- Foliar 7" band Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

Vigor Dead Beets / 100ft Ratings App. **RWST** No. Net \$/A **RWSA Treatment** Rate /Acre Beets / * 0-10 Timing 100 Ft **Early** Late Avg 3 229 0.2 \$1,298 224 183 8.0 7589 7 Kabina 14 g ai ST d а-е Quadris 10 fl oz In-Fur Quadris 14.25 fl oz 8 If \$1,278 169 7.9 7527 231 3 ST 0.2 d 207 Systiva 5 g ai 10 fl oz In-Fur Quadris Quadris 14.25 fl oz 8 If ST 0.3 \$1.361 230 179 8.3 7883 228 6 Kabina 14 g ai cd a-d 14.25 fl oz 8 If Quadris ST 0.3 \$1,307 211 172 8.3 7598 234 Systiva 5 g ai cde Quadris 10 fl oz In-Fur 173 7.8 11 No Seed Trt 0.7 bcd \$1,275 210 de 7458 230 Quadris 10 fl oz In-Fur Quadris 14.25 fl oz 8 If 10 No Seed Trt 0.7 \$1,298 235 180 8.2 7526 225 bcd ab Quadris 14.25 fl oz 8 If \$1,388 174 8014 229 5 Kabina 14 g ai ST 0.7 bcd 225 8.2 а-е 10 fl oz Quadris In-Fur 171 5 q ai ST 0.7 bcd \$1,375 215 8.0 8019 232 2 Systiva b-e Quadris 14.25 fl oz 8 If \$1.247 170 7.7 7196 225 Systiva ST 1.2 bcd 217 4 5 g ai b-e No Quadris \$1,367 176 8.1 7890 230 No Seed Trt 1.3 214 9 bc cde In-Fur Quadris 10 fl oz 176 7.8 7590 14 g ai 1.5 \$1,325 243 228 8 Kabina b а No Quadris 7.7 2.7 \$1,264 180 7238 227 12 231 No Seed Trt abc No Quadris

Average	0.86	\$1,315.3	221.9	175.3	7.99	7627.2	229.1
LSD 5%	0.92	n.s.	17.9	n.s.	n.s.	n.s.	n.s.
CV %	91.9	9.4	6.9	6.9	6.6	9.2	4.2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Vigor: 0 to 10 ratings, 10 is the best

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

MICHIGAN SUGAR Blumfield, Richville, MI - 2018

(Page 8 of 10)

Effect of Seed Treatments (avg. of all Quadris applic.)

No.	Treatment	Rate /Acre	App. Timing	Dead Beets /	Net \$/A	Beets	/ 100ft	Vigor Rating* 0- 10	RWSA	RWST	
			J	100 Ft		Early	Late	Avg 3			
1	Systiva	5 g ai	ST	0.6	\$1,302	213	170	8.0	7585	231	
2	Kabina	14 g ai	ST	0.7	\$1,343	231	178	8.1	7769	228	
3	B Untreated Check		1.3	\$1,301	222	177	7.9	7528	228		
Δ.,,	orogo			0.97	¢1 215 2	221.01	175 20	7.00	7627.2	220.0	

Average	0.87	\$1,315.3	221.91	175.28	7.99	7627.3	229.0
LSD 5 %	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
CV %	128.4	5.4	11.0	9.4	5.0	5.4	4.9

Effect of Quadris Applic. (avg. of all Seed Treatments)

No.	Treatment	Rate /Acre	App. Timing	Dea Beet		Net \$/A	Beets / 100ft		10		RWSA	RWST
				100	00 Ft		Early Late		Avg 3			
3	Quadris	10 fl oz	In Fur	0.3	b	\$1,284	214	С	175	7.9	7524	230
	Quadris	14.25 fl oz	8 If									
2	Quadris	14.25 fl oz	8 If	0.6	b	\$1,345	227	ab	177	8.1	7809	229
1	Quadris	10 fl oz	In Fur	0.8	b	\$1,354	217	bc	174	8.2	7834	231
4	Untreated Ch	eck		1.8	а	\$1,279	230	а	175	7.7	7341	226
Ave	Average			0.88		\$1,315.5	221.91		175.28	7.99	7627.0	229.0
LSD 5 %			0.53		n.s.	10.33		n.s.	n.s.	n.s.	n.s.	

9.2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Vigor: 0 to 10 ratings, 10 is the best

CV %

Comments: Systiva and Kabina (seed treatments for Rhizoctonia) were applied with and without Quadris in this small plot replicated trial. The Rhizoctonia (*Rhizoctonia solani* AG 2-2 IIIB) level was too low to make accurate disease assessments. Neither seed treatment effected sugarbeet emergence. The sugarbeet variety planted has partial tolerance to Rhizoctonia.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

91.9

Bold: Results are not statistically different from top-ranking treatment in each column.

6.6

9.2

4.2

% OM: 3.2 **pH:** 6.1 **CEC:** 10.7

MICHIGAN SUGAR Shaffner, Freeland, MI - 2018

(Page 9 of 10)

Trial Quality: Fair-Good Variety: C-G333N Planted: May 9

Harvested: Sept 21 Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

P: above opt **K:** above opt

Mn: high B: low Added N: 135 lbs Prev Crop: Corn

Soil Info: Sandy Loam

Rhizoc Level: Low-Moderate

Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches Rainfall: 12.8 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa- Foliar 7" band Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

				Dea	ad				Vigor		
No.	Treatment	Rate /Acre	App. Timing	Beet	ts /	Net \$/A	Beets	/ 100ft	Rating* 0-10	RWSA	RWST
			ııııııg	100	Ft		Early Late		Avg 3		
3	Systiva	5 g ai	ST	2.0	b	\$1,588	131 c	262	8.0	9634	241
	Quadris	10 fl oz	In-Fur								
	Quadris	14.25 fl oz	8 If								
7	Kabina	14 g ai	ST	2.3	b	\$1,626	135 c	269	8.0	9807	240
	Quadris	10 fl oz	In-Fur								
	Quadris	14.25 fl oz	8 lf								
11	No Seed Trt			2.5	b	\$1,595	128 c	270	7.9	9627	236
	Quadris	10 fl oz	In-Fur								
	Quadris	14.25 fl oz	8 If								
1	Systiva	5 g ai	ST	3.3	b	\$1,622	136 c	244	7.2	9742	236
	Quadris	10 fl oz	In-Fur			4					
5	Kabina	14 g ai	ST	3.5	b	\$1,608	136 c	246	7.0	9608	234
	Quadris	10 fl oz	In-Fur			*		2.12			
9	No Seed Trt			4.3	b	\$1,665	140 bc	243	6.7	9945	238
	Quadris	10 fl oz	In-Fur		-	A				2.172	
8	Kabina	14 g ai	ST	4.5	b	\$1,542	172 a	263	7.7	9153	236
10	No Quadris			4 =		04.040	450	005	0.0	0000	007
10	No Seed Trt	44.05.0	0.14	4.7	b	\$1,613	153 abc	225	6.8	9669	237
	Quadris	14.25 fl oz	8 lf	4.0		Φ4 F07	400	050	7.0	0.470	0.40
4	Systiva	5 g ai	ST	4.8	b	\$1,587	169 a	250	7.8	9473	240
	No Quadris	F	OT	.		#4.000	470 -	0.40	7.4	0077	0.44
2	Systiva	5 g ai	ST	5.2	b	\$1,606	173 a	243	7.1	9677	241
	Quadris	14.25 fl oz	8 lf	0.5		Φ4 CO7	405 -1	000	0.0	0044	0.44
6	Kabina	14 g ai	ST	6.5	b	\$1,637	165 ab	238	6.6	9811	241
40	Quadris	14.25 fl oz	8 If	44.0		Φ4 FΩ4	4.471: -	0.47	7.4	0044	000
12	No Seed Trt			11.0	а	\$1,501	147 abc	247	7.4	8911	230
	No Quadris										
Ave	erage			4.56		\$1,599.2	148.8	250.0	7.34	9588.0	237.4
LSI	O 5%			4.48		n.s.	24.2	n.s.	n.s.	n.s.	n.s.
CV	%			84.	.6	7.4	14.0	11.1	15.4	7.3	2.7

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Vigor: 0 to 10 ratings, 10 is best

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Commercial Seed Treatments for Control of Rhizoctonia Root Rot in Sugarbeets

(Page 10 of 10)

Effect of Seed Treatments (avg. of all Quadris applic.)

No.	Treatment	Rate /Acre	Dead App. He /Acre Timing Beets / Net \$/A		Beets	/ 100ft	Vigor Rating* 0-10	RWSA	RWST	
				100 Ft		Early	Late	Avg 3		
1	Systiva	5 g ai	ST	3.8	\$1,600	152	250	7.5	9632	239
2	Kabina	14 g ai	ST	4.2	\$1,603	152	254	7.3	9595	237
3	Untreated Ch	eck		5.6	\$1,594	142	246	7.2	9538	235
Ave	Average		4.53	\$1,599.2	148.8	250.0	7.34	9588.0	237.4	
LSD 5 %		1.47	79.1	15.8 16.2		0.50	469.7	2.5		
CV %			50.2	7.7	16.5	10.1	10.5	7.6	1.7	

Effect of Quadris Applic. (avg. of all Seed Treatments)

No.	Treatment	Rate /Acre	App. Timing		eets / Net \$/A		Beets / 100ft				Viç Rati 0-	_	RWSA	RWST
				100	Ft		Ear	ly	Lat	е	Avg 3			
3	Quadris	10 fl oz	In Fur	2.3	С	\$1,603	131	b	267	а	7.9	а	9689	239
	Quadris	14.25 fl oz	8 If											
1	Quadris	10 fl oz	In Fur	3.7	bc	\$1,631	138	b	244	b	7.0	bc	9765	236
2	Quadris	14.25 fl oz	8 If	5.4	ab	\$1,619	164	а	235	b	6.8	С	9719	240
4	Untreated Ch	eck		6.8	а	\$1,544	163	а	253	ab	7.6	ab	9179	235
Ave	erage			4.5	5	\$1,599.2	148	.8	250	.0	7.34		9588.0	237.4
LS	D 5 %			2.5	9	79.1	13.	9	18.	6	0.	76	469.5	4.2
CV	′ %			84.	.6	7.4	14.	0	11.	1	15.4		7.3	2.7

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Vigor: 0 to 10 ratings, 10 is best

Comments: Systiva and Kabina (seed treatments for Rhizoctonia) were applied with and without Quadris in this small plot replicated trial. The Rhizoctonia (Rhizoctonia solani AG 2-2 IIIB) level was low to moderate. Systiva and Kabina provided similar levels of Rhizoctonia root rot control and did not damage sugarbeet emergence. Preformance was improved with the addition of Quadris, especially when applied In-furrow at planting, although it slowed emergence and had a slight effect on final stand. The sugarbeet variety planted has partial tolerance to Rhizoctonia.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

AgBioResearch

Evaluation of fungicide seed treatments to manage Aphanomyces root rot of sugar beet

Jaime Willbur and Chris Bloomingdale, Michigan State University

Location: Saginaw (Spero Farms)	Treatment Timings: Seed Treatment						
Planting Dates: May 1, 2018 & May 18, 2018	Pesticides: see table						
Soil Type: Sandy Loam	O.M.: 3.0 pH: 7.2						
Replicates: 4	Variety: Valent Lot 7179.27.11.1001						

Table 1. Sugar beet stand counts, disease index ratings, and yield parameters from the two tested planting dates.

Treatment	Stand Count ^a	Disease Index (%) ^b	Yield (t/A)	Sugar (%)	RWST
Planting 1	262.9	29.1	50.7 a	14.7	211.9
Planting 2	258.0	28.6	44.2 b	14.5	208.4

Table 2. Sugar beet stand counts, disease index ratings, and yield parameters by fungicide seed treatment programs.

Treatment and Rate/Acre	Stand Count ^a	Disease Index (%) ^b	Yield (t/A)	Sugar (%)	RWST
Non-treated control	259.0 a-c	30.6	47.5	14.6	211.7
Sebring 318FS 0.015 fl oz + Systiva XS 0.52 fl oz + Tachigaren 70WP 1.59 oz	254.6 bc	27.8	47.0	14.6	209.8
Sebring 318FS 0.015 fl oz + Systiva XS 0.52 fl oz + Intego Solo 3.2FS 0.35 fl oz	245.1 c	26.9	46.5	14.7	212.0
Sebring 318FS 0.015 fl oz + Experimental 0.04 fl oz + Intego Solo 3.2FS 0.35 fl oz	272.8 a	30.0	47.4	14.4	208.1
Sebring 318FS 0.015 fl oz + Experimental 0.04 fl oz + Metlock 3.7FS 0.015 fl oz + Rizolex 4.17FS 0.031 fl oz + Intego Solo 3.2FS 0.35 fl oz	269.1 a	30.1	48.5	14.7	211.2
Sebring 318FS 0.015 fl oz + Experimental 0.04 fl oz + Metlock 3.7FS 0.015 fl oz + Rizolex 4.17FS 0.031 fl oz + Intego Solo 3.2FS 0.35 fl oz + Aveo EZ 0.14 fl oz	262.0 ab	27.8	47.9	14.5	208.2

^a Column values followed by the same letter are not significantly different based on Fisher's Protected LSD (α =0.05); if no letter, then the effect is not significant.

Summary: There was not a significant planting date x seed treatment interaction (P>0.05) for any of the parameters analyzed, so planting date and seed treatments were analyzed separately. Planting date did not have a significant effect on stand establishment (P>0.05). There were significant differences among seed treatments in stand establishment (P<0.01). Treatments with compound A did have numerically greater stand counts, but these values were not significantly different from the non-treated control. Analysis of root disease ratings revealed no effects of planting date or seed treatment on disease index (P>0.05). Yield was significantly affected by planting date (P<0.0001) but not by seed treatment (P>0.05). Plots planted at the earlier timing averaged 6.5 t/A more than the later planting date. Percent sugar did not differ among treatments or planting dates (P>0.05), with the trial average being 14.6%. Mean RWST also did not differ between planting dates or among seed treatments (P>0.05).

This trial was not inoculated with *Aphanomyces* sp. but was planted in a grower field with a previous history of disease. End-of-season root evaluations suggest that *Aphanomyces* sp. were widespread throughout the trial, but roots were unaffected by seed treatments. The Aphanomyces root rot symptoms observed were more consistent with the chronic phase of the disease, onset between June and harvest, than with the acute seedling blight. If seed treatments were targeted at early season prevention, then they may have been more effective if seedling blight had been an issue in this field. All yields were greater than the 30 t/A averages for Michigan in 2017. No significant stand loss was detected and Rhizoctonia and leaf spot diseases were heavily managed with foliar programs. This in combination with low early season disease pressure likely accounts for the high yields observed in this trial.

^b Disease index was calculated by multiplying the disease incidence (0-100%) by the severity (0-7), then dividing by 7.

4 reps

Plot Size:

Systiva Seed Treatment Wegener Farms, Auburn - 2018

Very good Soil Info: Loam Rhiz Control: Low/moderate pressure: **Trial Quality:**

See treatments Fertilizer: Fall: 250# Potash; 2x2: Variety: C-G333NT

10 gal 28%, 6 gal 10-34-0, Cerc Control: Good control: 6/30 Inspire Planted: April 29 4 gal Thiosul, 1 qt B; XT + Topsin, 7/20 S.T. + Harv/Samp: Nov 3 / Oct 17

S.D.: 35 gal 28% Badge, 8/3 Enable + Prev Crop: Dry beans EBDC, 8/20 S.T. + EBDC,

9/5 Delaro + Proline Row Spacing: 30 inch Weather: Dry until mid July, then

good weather Seeding Rate: 56,000 Other Pests: N/A

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP		lation of Row 30 Day		
No Systiva Foliar Quadris	\$1,480	8801	241	36.5	16.4	96.4	110	286	50	
No Systiva In Furrow Quadris	\$1,437	8554	242	35.4	16.3	96.4	112	298	52	
Systiva Foliar Quadris	\$1,432	8532	243	35.1	16.4	96.3	129	298	18	
No Systiva In Furrow & Foliar	\$1,431	8518	245	34.8	16.5	96.0	112	298	26	
Systiva In Furrow & Foliar	\$1,404	8357	241	34.7	16.3	96.3	116	292	7	
Systiva In Furrow Quadris	\$1,398	8316	241	34.5	16.3	96.4	116	292	35	
Systiva No Quadris	\$1,380	8217	238	34.5	16.2	96.1	129	298	82	
No Systiva No Quadris	\$1,336	7952	236	33.6	16.0	96.2	110	286	121	
LSD 5%	_	ns	ns	ns	ns	ns	ns	ns	58	
CV %	_	4	2	3.5	1.5	0.5	14	3	81	

Comments: This trial was conducted to look at the effect of Systiva seed treatment (BASF) with and without Quadris applied in a T-band in-furrow and foliar. This is the third year of testing Systiva in SBA trials. This trial had low to moderate disease pressure which led to a low amount of impact on yield and quality. In these trials, the best indicator of the treatment's performance against Rhizoctonia is the dead beet counts. All treatments that had Quadris were significantly better than the check (No Quadris/No Systiva) for dead beet counts. In regard to dead beet counts, every Quadris treatment was numerically improved when Systiva was included in the same treatment (for instance In-furrow Quadris compared to Systiva + In-furrow Quadris). An interesting trend over 6 trials from the last 3 years has occurred in regard to tonnage. In any treatment that had Quadris applied (either in-furrow, foliar or both), the same treatment with Systiva yielded less than the Quadris only treatment in 13 of 14 comparisons. These yield differences are small and not statistically significant, but consistent. This spring, seedling injury from Systiva was seen at the VanDenBoom Trial. It is possible that since the Systiva does not greatly improve disease control when Quadris is used, the injury early in the season may be causing some small yield loss. The in-furrow treatments had 5.5 oz/acre of Quadris with 2.5 oz of Mustang Max. The foliar treatments were 10.5 oz/acre of Quadris applied on 6/7 at the 8 leaf stage.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment, an average RWST of 238.

Systiva Seed Treatment VanDenBoom Farms, Munger - 2018

Trial Quality: Very good Soil Info: Loam Rhiz Control: Low/moderate pressure.

Variety: C-G333NT Fertilizer: Fall: V.R. MESZ, Potash;

See treatments.

Planted: May 1 2x2: 44#-20#-0-11S+ Zn,

Cerc Control: Good control: See

MN, B; S.D. 47 gal of 28%

comments for materials

Harv/Samp: Oct 29 / Oct 17

Plot Size: 4 reps Prev Crop: Corn

Row Spacing: 28 inch Weather: Dry until mid July, then Other Pests: N/A

Seeding Rate: 55,000 good weather

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP		lation of Row 30 Day	Dead Beets 1200 Ft
Systiva In Furrow & Foliar	\$1,620	9641	268	36.0	17.7	96.5	216	275	11
No Systiva In Furrow Quadris	\$1,616	9620	263	36.6	17.4	96.7	246	269	36
Systiva Foliar Quadris	\$1,611	9588	269	35.6	17.8	96.5	209	268	33
No Systiva In Furrow & Foliar	\$1,592	9471	261	36.3	17.4	96.2	246	269	44
No Systiva Foliar Quadris	\$1,591	9465	263	36.0	17.5	96.5	260	273	56
No Systiva No Quadris	\$1,573	9360	260	36.0	17.4	96.4	260	273	122
Systiva In Furrow Quadris	\$1,560	9284	263	35.3	17.5	96.9	216	275	49
Systiva No Quadris	\$1,502	8936	264	33.9	17.5	96.3	209	268	98
LSD 5%	_	ns	ns	1.4	ns	ns	12	ns	51
CV %	_	4	2	2.6	1.4	0.4	5	4	61

Comments: This trial was conducted to look at the effect of Systiva seed treatment (BASF) with and without Quadris applied in a T-band in-furrow and foliar. This is the third year of testing Systiva in SBA trials. This trial had low to moderate disease pressure which led to a low amount of impact on yield and quality. In these trials, the best indicator of the treatment's performance against Rhizoctonia is the dead beet counts. All treatments that had Quadris were significantly better than the check (No Quadris/No Systiva) for dead beet counts. An interesting trend over 6 trials from the last 3 years has occurred in regard to tonnage. In any treatment that had Quadris applied (either in-furrow, foliar or both), the same treatment with Systiva yielded less than the Quadris only treatment in 13 of 14 comparisons. These yield differences are small and not statistically significant, but consistent. This spring, seedling injury from Systiva was seen in this trial. The damage was apparent on the cotyledon leaves and the plants seemed to grow out of the damage within about a week. The damage is the reason for the lower early emergence counts. It is possible that since the Systiva does not greatly improve disease control when Quadris is used, the injury early in the season may be causing some small yield loss. The in-furrow treatments had 6 oz/acre of Quadris with 4 oz of Mustang Max. The foliar treatments were 11.25 oz/acre of Quadris applied on 6/8 at the 8 leaf stage. Leafspot materials: 6/25 Proline + EBDC, 7/11 Super Tin + EBDC, 7/23 Enable + EBDC, 8/9 Manzate, 8/18 Super Tin + EBDC, 8/31 Inspire XT + EBDC, 9/11 SuperTin, 9/24 Badge. All included Masterlock.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment, an average RWST of 238.

AgBio**Research**

Sugar Beet Field: Evaluation in-furrow Abamectin treatments at planting for nematode management.

Brian Levene¹, Brian Groulx², James Stewart² and Marisol Quintanilla¹, ¹Michigan State University and ²Michigan Sugar

Location: Akron, MI	Treatment Timings: In-Furrow Treatments
Planting Dates: May 17, 2018	Treatments: 3 (see table)
Soil Type: Clay Loam	O.M.: 3.4 pH: 7.3
Replicates: 6	Variety: C-RR059

Table 1. Yield parameters^a of in-furrow Abamectin application programs, 2018.

Rating Ty	pe				RWSA		RWST		T/A		Sugar		CJP	
Rating Un	Rating Unit						lb suc/T	lb suc/T		Tons/A		-	%	
Trt	Treatment		Rate	Appl										
No.	Name	Rate	Unit	Code		1		2		3		4	5	
1	Abamectin	3.47	fl oz/a	A	9530.6	a	227.9	a	41.83	a	15.75	a	94.46 a	
2	Abamectin	6.94	fl oz/a	A	9215.3	ab	225.9	a	40.8	ab	15.42	a	95.15 a	
3	Untreated Check				8696.5	b	221.3	a	39.3	b	15.35	a	94.38 a	
Replicate	F				1.0	031	0.69	9	0	.97	0.26	3	0.375	
Replicate Prob(F)					0.44	433	0.58	6	0.4659		0.850	1	0.7746	
Treatment F						712	2.125		10.394		1.221		3.984	
Treatment	Prob(F)				0.00	085	0.200	6	0.01	12	0.359	1	0.0793	

^a Column values followed by the same letter are not significantly different based on Tukey's HSD (α =0.05); if no letter, then the effect is not significant.

Summary: There was a statistical difference observed in the yield data (Table 1). The low rate Abamectin achieved significantly greater yield than the untreated control but was only numerically greater than the high rate Abamectin treatment. The concentration of sugar in the beets as well as the quantity of sugar when could be extracted from the beets was statistically similar for all treatments. However, when all these factors are combined to determine the total amount of Raw White Sugar per Acre (RWSA) there were again statistical differences that favored the low-rate Abamectin over the untreated control.

Early season evaluations for plant vigor showed a slight numerical advantage for the Abamectin treatments over the untreated control. However, all vigor and plant population evaluations showed no significant differences among treatments. The plot area experienced little or no rain for most of June and July this season. Had there been more rainfall during this mid-season development period, the observed differences many have been greater.

Initial nematode evaluations from the plot area showed an average of 1.6 cyst, 174 eggs and just over 2 juvenile BCN per 100 cc of soil at the time of planting. The evaluations for BCN associated with each treatment at the time of harvest have not yet been completed.

AgBioResearch

Sugar Beet Field: Evaluation in-furrow and/or foliar pesticide applications for nematode management.

Brian Levene¹, Brian Groulx², James Stewart² and Marisol Quintanilla¹,

¹Michigan State University and ²Michigan Sugar

Location: Akron, MI	Treatment Timings: In-Furrow Treatments
Planting Dates: May 17, 2018	Treatments: 6 (see table)
Soil Type: Clay Loam	O.M.: 3.4 pH: 7.3
Replicates: 6	Variety: C-RR059

Table 1. Yield parameters^a of in-furrow and foliar applications of pesticides to control BCN in sugar beets, 2018.

Rating T	ype				RWSA	RWST	T/A	Sugar	CJP	
Rating U	Init				lb suc/A	lb suc/T	Tons/A	%	%	
Trt	Treatment	Rate	Rate	Appl						
No.	Name		Unit	Code	1	2	2 3	4	. 5	
	1 Untreated Check				8945.8 a	235.6	a 37.98 ab	16.15 a	94.74 a	
	2 Velum Prime	6.5	fl oz/a	A	8800 a	235.6	a 37.36 b	16.14 a	94.8 a	
	3 Propulse	13.6	fl oz/a	A	9144.7 a	233.2	39.19 a	15.94 a	94.96 a	
	4 Velum Prime	6.5	fl oz/a	A	9117.6 a	240.1	a 37.99 ab	16.46 a	94.67 a	
	Movento HL	2.5	fl oz/a	C						
	Destiny HC	0.5	% v/v	С						
	5 Propulse	13.6	fl oz/a	A	9238.1 a	236.2	a 39.12 a	16.08 a	95.13 a	
	Movento HL	2.5	fl oz/a	C						
	Destiny HC	0.5	% v/v	С						
	6 Movento HL	2.5	fl oz/a	В	8960.4 a	231.8 8	38.68 ab	15.86 a	94.9 a	
	Destiny HC	0.5	% v/v	В						
	Movento HL	2.5	fl oz/a	С						
	Destiny HC	0.5	% v/v	C						
Replicat	e F				1.66	1.382	3.525	1.511	0.159	
Replicat	e Prob(F)	0.1812	0.2646	0.0151	0.2222	0.975				
Treatme	nt F				1.593	0.910	5.505	1.098	0.508	
Treatme	nt Prob(F)				0.1985	0.4866	0.0015	0.3861	0.7676	

^a Column values followed by the same letter are not significantly different based on Tukey's HSD (α =0.05); if no letter, then the effect is not significant.

Summary: All sugar beet yields from the plots were statistically similar with two exceptions (Table 1). The application of Velum Prime followed by Movento/Destiny (Treatment 4) had lower yields than both treatments where Propulse was applied as a T-band at planting (Treatments 3&5). This Velum treatment had the lowest plant populations on all sample dates (data not presented). Potentially more of this treatment contacted the seed than for treatment #2 which began with the same applications. The Movento/Destiny application alone, and also when it was followed by Propulse, did not appear to reduce plant stands or plant vigor. Therefore, something unexpected may have happened for the Velum Prime applications at planting for treatment #4 which reduced the plant populations for this specific treatment and reduced yields. We do not believe that this treatment directly reduced the sugar beet stands and therefore the treatment yields.

Despite significant differences in the crop yields by treatment and numerical differences in the sugar concentration, the quantity of RWSA was statistically similar for all treatments. The untreated control and all chemical treatments achieved similar levels of sugar production on a per acre basis. Had there not been a period of moisture stress during July, the early season differences in plant vigor and even plant stands may have allowed for some greater treatment separation in these yield values.

Initial nematode evaluations from the plot area showed an average of 2.9 cyst, 265 eggs and just over 3 juvenile BCN per 100 cc of soil at the time of planting. The evaluations for BCN associated with each treatment at the time of harvest have not yet been completed.

^b Application Codes: A=in-furrow T-Band at planting, B=14 days after emergence, C=30 days after emergence

AgBioResearch

Sugar Beet Field: Evaluation of oilseed radish cover crop, pre-plant application timing /rate and in-furrow pesticide applications for nematode management.

Brian Levene¹, Brian Groulx², James Stewart² and Marisol Quintanilla¹, ¹Michigan State University and ²Michigan Sugar

Location: Akron, MI	Treatment Timings: Fall, spring and at planting
Planting Dates: May 17, 2018	Treatments: 3 (see table)
Soil Type: Clay Loam	O.M.: 3.4 pH: 7.3
Replicates: 6	Variety: C-RR059

Table 1. Yield parameters^a comparing application timing, rates and placement of pesticides to control BCN in sugar beets, alone or in combination with oilseed radish cover crop, 2018.

Rating Type RWSA RWST T/A Sugar CJP Rating Unit lb suc/A lb suc/T Tons/A % %											
Rating	Unit				lb suc/A		lb suc/T	Tons/A	%	%	
Trt	Treatment		Rate	Appl							
No.	Name	Rate	Unit	Code		1	2	2	4	5	
1	Untreated Check		0	0	8977	a	231.7 a	38.7 a	15.87 a	94.86 a	
2	NIMITZ	3.5	pt/a	A	9086.1	a	233.4 a	38.9 a	15.97 a	94.92 a	
	Defender Oilseed Radish	18	lb/a	В							
3	ADA 36380 (Fluensulfone)	4.4	pt/a	A	9285.3	a	232 a	40 a	15.98 a	94.55 a	
	Defender Oilseed Radish	18	lb/a	В							
4	Defender Oilseed Radish	18	lb/a	В	9393	a	237.7 a	39.5 a	16.26 a	94.85 a	
5	NIMITZ	3.5	pt/a	A	9050.1	a	234.9 a	38.5 a	16.07 a	94.87 a	
6	ADA 36380 (Fluensulfone)	4.4	pt/a	A	9287.2	a	238.5 a	38.9 a	16.33 a	94.75 a	
7	NIMITZ	7	pt/a	A	9288	a	233.7 a	39.7 a	16.06 a	94.65 a	
8	ADA 36380 (Fluensulfone)	8.8	pt/a	A	9343.7	a	234.5 a	39.9 a	15.98 a	95.07 a	
9	NIMITZ	3.5	pt/a	C	9225.6	a	234.7 a	39.3 a	16.07 a	94.82 a	
10	ADA 36380 (Fluensulfone)	4.4	pt/a	С	9286.8	a	235.6 a	39.4 a	16.15 a	94.76 a	
11	NIMITZ	0.8	pt/a	D	8943.5	a	227.7 a	39.3 a	15.68 a	94.65 a	
12	ADA 36380 (Fluensulfone)	1	pt/a	D	9313	a	232.4 a	40.1 a	16.02 a	94.51 a	
Replicate F 1.854 2.09 1.244 2.028 1.402											
-	ate Prob(F)	0.117	75	0.0804	0.3014	0.0889	0.238				
Treatn					0.4						
Treatment Prob(F) 0.9251 0.481 0.9666 0.6722 0.2062											

^a Column values followed by the same letter are not significantly different based on Tukey's HSD (α =0.05); if no letter, then the effect is not significant.

Summary: Despite a difference as large as 450 lbs./acre in RWSA between two treatments, there were no statistical differences between any of the treatments imposed. Still, there was a trend for the ADA-based treatments to have slightly greater yields than the respective Nimitz based treatments. Additionally, the yield for all the ADA-based treatments were fairly similar regardless of application rate or timing of application. There were greater differences among the Nimitz-based treatments for sugar beet yield/quality.

The use of Defender Oilseed Radish enhanced the overall sugar yield when it was compared to the same respective treatment without any radish. Product pricing was not included for the radish seed, so it is uncertain if the advantage would have been profitable investment strictly based on yield enhancement.

Initial nematode evaluations from the plot area at the time of planting in the spring showed an average of 1 cyst, 90 eggs and just over 2 juvenile BCN per 100 cc of soil at the time of planting. The evaluations for BCN associated with each treatment at the time of harvest have not yet been completed.

^b Application Codes: A=PPI August 2017, B=drill Aug 2017, C=PPI 3 days prior to planting, D=In-furrow at planting.

Evaluate Application Methods for Applying Nitrogen on Sugarbeets

Blumfield West, Richville, MI - 2018

(Page 1 of 4)

Trial Quality: Good Variety: C-675 Planted: April 27

Harvested: Sept 24 Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Clay Loam

% OM: 2.9 **pH:** 7.1 **CEC:** 16.4 **P:** above opt **K:** above opt

Mn: high B: med Added N: 135 lbs.

Prev Crop: Rye

Rhizoc Level: Low Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches Rainfall: 22.3 inches

Application: 2X2 on planter, 4 lf stage incorporated with fluted coulter (between rows)

No.	Treatment	Applic Timing	Rate/A	Net \$	5/A	RW	SA	RW	ST	T/	Ά.	% SU		% CJP
3	UAN 28%	PPI	40 gal	\$1,417	а	9203	а	254	ab	36.2	a-d	17.1	abc	95.5
	Redline	In-Fur	3 gal											
17	UAN 28%	2X2	13.3 gal	\$1,393	ab	8991	ab	240	h	37.5	а	16.4	fg	95.0
	UAN 28%	F. Coulter	26.7 gal											
18	Redline	In-Fur	3 gal	\$1,372	abc	8924	abc	242	fgh	36.9	ab	16.5	d-g	95.0
	UAN 28%	2X2	13.3 gal											
	UAN 28%	F. Coulter	26.1 gal											
19	Redline	In-Fur	3 gal	\$1,371	abc	8923	abc	243	d-h	36.7	abc	16.5	c-g	95.1
	UAN 28%	2X2	13.3 gal											
	UAN 28%	F. Coulter	26.1 gal											
14	10-34-0	In-Fur	3 gal	\$1,365	abc	8851	abc	245	b-h	36.1	a-d	16.6	b-g	95.2
	UAN 28%	F. Coulter	39.8 gal											
1	UAN 28%	PPI	40 gal	\$1,357		8772	а-е	245	b-h	35.9	a-d	16.5	c-g	95.4
16	Soyshot	In-Fur	3 gal	\$1,352	a-d	8804	a-d	248	a-h	35.5	а-е	16.7	a-g	95.4
	UAN 28%	F. Coulter	40 gal											
5	UAN 28%	PPI	40 gal	\$1,344	а-е	8755	а-е	247	a-h	35.4	а-е	16.7	a-g	95.2
	Levesol	In-Fur	64 fl oz											
21	Levesol	In-Fur	64 fl oz	\$1,344	а-е	8754	а-е	246	b-h	35.6	a-d	16.7	a-g	95.0
	UAN 28%	2X2	13.3 gal										_	
	UAN 28%	F. Coulter	26.1 gal											
4	UAN 28%	PPI	40 gal	\$1,338	а-е	8682	a-f	243	d-h	35.7	a-d	16.4	efg	95.4
	10-34-0	In-Fur	3 gal											
11	UAN 28%	PPI	20 gal	\$1,332	а-е	8616	a-f	252	а-е	34.2	a-f	17.0	а-е	95.5
	UAN 28%	2X2	13.3 gal											
	UAN 28%	F. Coulter	6.7 gal											
22	Soyshot	In-Fur	3 gal	\$1,321	а-е	8613	a-f	247	a-h	34.9	a-f	16.8	a-g	95.1
	UAN 28%	2X2	13.3 gal											
	UAN 28%	F. Coulter	26.1 gal											
2	UAN 28%	PPI	40 gal	\$1,319	а-е	8601	a-f	247	a-h	34.8	a-f	16.8	a-g	95.1
	Redline	In-Fur	3 gal											
26	UAN 28%	2X2	13.3 gal	\$1,318	а-е	8531	a-f	252	a-d	33.8	b-g	17.1	a-d	95.2
	UAN 28%	7 Stream	26.7 gal											

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST.

Fertilizer costs are incorporated into Net \$/A.

Evaluate Application Methods for Applying Nitrogen on Sugarbeets

Blumfield West, Richville, MI - 2018

(Page 2 of 4)

No.	Treatment	Applic Timing	Rate/A	Net \$/A	RWSA	RWST	T/A	% SUC	% CJP
6	UAN 28%	PPI	40 gal	\$1,318 a-e	8590 a-f	244 c-h	35.2 а-е	16.6 b-g	95.0
Ш	Soyshot	In-Fur	2 gal						
7	UAN 28%	PPI	26.7 gal	\$1,313 a-e	8500 a-g	248 a-h	34.2 a-f	16.8 a-g	95.3
	UAN 28%	2X2	13.3 gal						
13	Redline	In-Fur	3 gal	\$1,312 a-e	8557 a-f	246 b-h	34.8 a-f	16.6 b-g	95.3
	UAN 28%	F. Coulter	39.5 gal						
15	Levesol	In-Fur	64 fl oz	\$1,310 a-e	8543 a-f	253 a-d	33.9 b-g	17.1 ab	95.0
	UAN 28%	F. Coulter	39.8 gal						
20	10-34-0	In-Fur	3 gal	\$1,278 b-f	8313 b-h	243 e-h	34.3 a-f	16.4 efg	95.4
	UAN 28%	2X2	13.3 gal						
ш	UAN 28%	F. Coulter	26.1 gal						
10	UAN 28%	PPI	20 gal	\$1,277 b-f	8274 b-h	249 a-h	33.3 c-h	16.9 a-f	95.1
	UAN 28%	7 Stream	20 gal						
	Agrotain Plus	7 Stream	1.66 lb						
27	UAN 28%	2X2	13.3 gal	\$1,264 b-g	8228 b-h	250 a-g	33.0 d-h	16.9 a-f	95.2
	UAN 28%	7 Stream	26.7 gal						
	Agrotain Plus	7 Stream	2.21 lb						
8	UAN 28%	PPI	20 gal	\$1,251 c-g	8117 c-h	242 gh	33.7 b-g	16.3 g	95.5
	UAN 28%	F. Coulter	20 gal						
9	UAN 28%	PPI	20 gal	\$1,232 d-g	7999 d-h	250 a-g	32.0 e-h	16.9 a-f	95.2
	UAN 28%	7 Stream	20 gal						
24	UAN 28%	7 Stream	40 gal	\$1,228 d-g	7971 e-h	252 a-f	31.7 fgh	16.9 a-f	95.5
12	Redline	In-Fur	3 gal	\$1,226 d-g	8023 d-h	244 c-h	32.9 d-h	16.6 b-g	95.2
	UAN 28%	F. Coulter	39.4 gal						
23	UAN 28%	F. Coulter	40 gal	\$1,219 efg	7915 fgh	247 a-h	32.1 e-h	16.8 a-g	95.0
29	UAN 28%	2X2	12.6 gal	\$1,218 efg	7724 ghi	252 a-d	30.7 ghi	17.0 a-d	95.3
	Redline	In-Fur	3 gal						
28	UAN 28%	2X2	13.3 gal	\$1,181 fg	7681 hi	256 a	30.0 hi	17.3 a	95.3
25	UAN 28%	7 Stream	40 gal	\$1,152 fg	7532 hi	247 a-h	30.5 ghi	16.8 a-g	95.1
	Agrotain Plus	7 Stream	3.32 lb	1					
30	Untreated Check	Κ		\$1,141 g	7066 i	253 abc	27.9 i	17.1 ab	95.1
Avera				\$1,295.5	8401.7	247.6	33.98	16.76	95.21
LSD				107.2	663.5	7.6	2.82	0.46	
LOD	J /0			107.2	003.5	0.1	∠.0∠	0.46	n.s.

Average	\$1,295.5	8401.7	247.6	33.98	16.76	95.21
LSD 5%	107.2	663.5	7.6	2.82	0.46	n.s.
CV %	7.3	6.9	2.7	7.3	2.4	0.5

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Nitrogen was applied PPI, 2X2 and 6 lf. Some of the 6 lf treatments were applied with a fluted coulter between the rows and some were applied foliar with streamer nozzles. The total nitrogen rate for most of the treatments was 120 lbs ai/A. PPI and PPI followed by 2X2 treatments trended toward the top of the trial. Applying all of the nitrogen at the 6 lf stage resulted in lower yields. Nitrogen (UAN 28%) applied with streamer nozzles caused minor leaf spotting but symptoms were short lived. None of the treatments caused sugarbeet stand loss.

Net \$/A: Assume a \$40 beet payment and trial average RWST.

Fertilizer costs are incorporated into Net \$/A.

Evaluate Application Methods for Applying Nitrogen on Sugarbeets

Blumfield West, Richville, MI - 2018

(Page 3 of 4)

No.	Treatment	Applic	Rate/A	Net \$/A	Injur 0-10)	Vig 0-1	0	Siz 0-1	0	Col 0-1	0	Beets/ 100 ft
		Timing			7-Ju	n	7-S	ер	9-A	ug	9-A	ug	7-Jun
3	UAN 28%	PPI	40 gal	\$1,417 a	0.0	b	7.8	fg	7.1	ab	7.3	а	180.3
	Redline	In-Fur	3 gal										
17	UAN 28%	2X2	13.3 gal	\$1,393 ab	0.0	b	8.5	а-е	8.1	а	8.2	а	189.5
	UAN 28%	F. Coulter	26.7 gal										
18	Redline	In-Fur	3 gal	\$1,372 abc	0.0	b	8.5	а-е	7.9	а	7.3	а	180.5
	UAN 28%	2X2	13.3 gal										
	UAN 28%	F. Coulter	26.1 gal										
19	Redline	In-Fur	3 gal	\$1,371 abc	0.0	b	8.8	ab	8.3	а	8.2	а	178.8
	UAN 28%	2X2	13.3 gal										
	UAN 28%	F. Coulter	26.1 gal										
14	10-34-0	In-Fur	3 gal	\$1,365 abc	0.0	b	8.3	a-g	7.6	а	8.2	а	190.0
	UAN 28%	F. Coulter	39.8 gal										
1	UAN 28%	PPI	40 gal	\$1,357 a-d	0.0	b	8.2	b-g	7.9	а	7.3	а	180.5
16	Soyshot	In-Fur	3 gal	\$1,352 a-d	0.0	b	8.5	а-е	7.4	ab	8.2	а	186.0
	UAN 28%	F. Coulter	40 gal										
5	UAN 28%	PPI	40 gal	\$1,344 a-e	0.0	b	8.2	b-g	7.9	а	7.3	а	176.0
	Levesol	In-Fur	64 fl oz										
21	Levesol	In-Fur	64 fl oz	\$1,344 a-e	0.0	b	8.2	b-g	7.9	а	7.0	а	187.2
	UAN 28%	2X2	13.3 gal										
	UAN 28%	F. Coulter	26.1 gal										
4	UAN 28%	PPI	40 gal	\$1,338 a-e	0.0	b	7.8	fg	7.1	ab	7.3	а	177.2
	10-34-0	In-Fur	3 gal										
11	UAN 28%	PPI	20 gal	\$1,332 a-e	0.0	b	8.8	а	8.1	а	7.9	а	186.3
	UAN 28%	2X2	13.3 gal										
	UAN 28%	F. Coulter	6.7 gal										
22	Soyshot	In-Fur	3 gal	\$1,321 a-e	0.0	b	8.5	а-е	8.3	а	7.3	а	180.3
	UAN 28%	2X2	13.3 gal										
	UAN 28%	F. Coulter	26.1 gal										
2	UAN 28%	PPI	40 gal	\$1,319 a-e	0.0	b	8.3	a-g	7.9	а	7.0	а	187.0
	Redline	In-Fur	3 gal					آ					
26	UAN 28%	2X2	13.3 gal	\$1,318 a-e	1.7	а	8.3	a-f	7.6	а	7.3	а	194.8
	UAN 28%	7 Stream	26.7 gal										

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST.

Fertilizer costs are incorporated into Net \$/A.

Evaluate Application Methods for Applying Nitrogen on Sugarbeets

Blumfield West, Richville, MI - 2018

(Page 4 of 4)

No.	Treatment	Applic	Rate/A	Net \$/A	Injur 0-10	-	Vig 0-1		Siz 0-1		Col 0-1		Beets/ 100 ft
		Timing			7-Ju	n	7-S	ер	9-A	ug	9-A	ug	7-Jun
6	UAN 28%	PPI	40 gal	\$1,318 a-e	0.0	b	8.0	d-g	7.1	ab	7.9	а	172.7
	Soyshot	In-Fur	2 gal										
7	UAN 28%	PPI	26.7 gal	\$1,313 a-e	0.0	b	8.0	d-g	7.6	а	7.3	а	180.3
	UAN 28%	2X2	13.3 gal										
13	Redline	In-Fur	3 gal	\$1,312 a-e	0.0	b	8.8	а	7.9	а	7.9	а	194.0
	UAN 28%	F. Coulter	39.5 gal										
15	Levesol	In-Fur	64 fl oz	\$1,310 a-e	0.0	b	8.3	a-f	7.6	а	7.3	а	186.3
	UAN 28%	F. Coulter	39.8 gal										
20	10-34-0	In-Fur	3 gal	\$1,278 b-f	0.0	b	8.7	abc	7.6	а	7.3	а	181.3
1 1	UAN 28%	2X2	13.3 gal										
ш	UAN 28%	F. Coulter	26.1 gal										
10	UAN 28%	PPI	20 gal	\$1,277 b-f	1.8	а	8.1	c-g	7.4	ab	7.3	а	191.0
	UAN 28%	7 Stream	20 gal										
	Agrotain	7 Stream	1.66 lb										
27	UAN 28%	2X2	13.3 gal	\$1,264 b-g	1.8	а	8.4	a-f	7.1	ab	7.6	а	192.5
	UAN 28%	7 Stream	26.7 gal										
	Agrotain	7 Stream	2.21 lb										
8	UAN 28%	PPI	20 gal	\$1,251 c-g	0.0	b	8.6	a-d	7.6	а	7.3	а	194.5
	UAN 28%	F. Coulter	20 gal										
9	UAN 28%	PPI	20 gal	\$1,232 d-g	1.7	а	7.8	fg	7.1	ab	7.0	а	179.7
	UAN 28%	7 Stream	20 gal										
24	UAN 28%	7 Stream	40 gal	\$1,228 d-g	1.8	а	8.4	a-f	7.1	ab	7.3	а	186.2
12	Redline	In-Fur	3 gal	\$1,226 d-g	0.0	b	8.3	a-g	8.3	а	7.3	а	190.0
	UAN 28%	F. Coulter	39.4 gal										
23	UAN 28%	F. Coulter	40 gal	\$1,219 efg	0.0	b	8.4	a-f	7.9	а	7.6	а	183.0
29	UAN 28%	2X2	12.6 gal	\$1,218 efg	0.0	b	7.7	g	7.1	ab	5.5	b	192.5
ш	Redline	In-Fur	3 gal										
28	UAN 28%	2X2	13.3 gal	\$1,181 fg	0.0	b	7.9	efg	6.2	bc	5.5	b	203.2
25	UAN 28%	7 Stream	40 gal	\$1,152 fg	1.8	а	8.5	а-е	7.6	а	7.3	а	183.0
	Agrotain	7 Stream	3.32 lb										
30	Untreated Check	k		\$1,141 g	0.0	b	7.2	h	5.7	С	4.2	С	185.8
۸,,	orago			\$1,295.5	0.36	3	8.2	96	7.5	./	7.2	2	185.68
	Average LSD 5%		107.2	0.30		0.4		1.0		0.9		163.84	
	/ %			7.3	64.2		5.		12.		11.		8.0
CV	/0			1.3	04.2	_	ე.	I	12.	.ა	11.	U	0.0

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST.

Fertilizer costs are incorporated into Net \$/A.

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season Average of 4 years, 5 Trials (2014 - 2018) (Page 1 of 6)

Nitrogen Rate Effect (Average of Harvest Dates and Locations)

No.	N. Rate Ib ai/A	Net \$/A	Net \$/T	RWSA	RWST	T/A	% SUC	% CJP	Canopy Closure %	Canopy Color 0-10
5	160	\$1,496 a	\$51.7 d	8431 a	265 b	31.9 a	17.8 b	95.4 b	87 a	7.9 b
3	80	\$1,454 ab	\$52.6 c	8037 b	265 b	30.2 b	17.8 b	95.2 cd	82 b	8.0 b
4	120	\$1,440 ab	\$51.7 d	8125 ab	262 cd	31.0 ab	17.8 b	95.0 e	83 b	8.2 b
6	200	\$1,410 b	\$50.9 e	8160 ab	264 bc	31.0 ab	17.8 b	95.3 bc	88 a	8.0 b
7	240	\$1,402 b	\$49.9 f	8258 ab	261 d	31.8 a	17.6 c	95.1 d	88 a	8.7 a
2	40	\$1,228 c	\$55.3 a	6645 c	275 a	24.2 c	18.3 a	95.7 a	77 c	5.1 c
1	0	\$934 d	\$54.2 b	4976 d	266 b	18.6 d	17.7 bc	95.7 a	66 d	4.2 d
A۱	/erage	\$1,337.7	\$52.32	7518.9	265.4	28.36	17.83	95.34	81.6	7.16
_	SD 5%	61.2	0.49	338.5	2.4	1.30	0.15	0.13	2.4	0.4
C,	V %	13.6	2.8	13.4	2.6	13.6	2.5	0.4	8.8	17.2

Harvest Date Effect (Average of Nitrogen Rates and Locations)

No.	Harvest Date	Net \$/A	Net \$/T	RWSA	RWST	T/A	% SUC	% CJP	Canopy Closure %	Canopy Color 0-10
2	Oct 1	\$1,395 a	\$52.5 b	7528 b	269 b	28.5 b	18.1 b	95.3 b	82.0 a	7.2
1	Sep 1	\$1,331 b	\$63.4 a	5449 с	244 c	22.5 c	16.7 c	94.8 c	80.7 b	7.2
3	Nov 1	\$1,288 c	\$41.1 c	9580 a	284 a	34.1 a	18.8 a	95.9 a	82.0 a	7.3
A۱	/erage	\$1,337.7	\$52.32	7519.0	265.4	28.36	17.83	95.34	81.60	7.16
LS	SD 5%	27.7	1.12	353.3	4.0	0.97	0.22	0.13	0.85	n.s.
C,	V %	9.7	10.04	21.9	7.0	16.0	5.8	0.6	4.8	9.7

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Five small plot replicated nitrogen rate X harvest date sugarbeet trials were conducted in the Michigan Sugar Company growing region from 2014 to 2018. The nitrogen rates utilized were: 0, 40, 80, 120, 160, 200 and 240 lbs N ai/Acre. Nitrogen (28% N) was applied 2X2 (40 lbs) at planting with the remainder applied at the 4-6 leaf stage with a fluted coulter. The harvest dates were Sept 1, Oct 1 and Nov 1. Sugarbeet yields increased significantly from 0 to 80 lbs N, however, yields were similar among the 120, 160, 200 and 240 lb N rates. Sugar content was the highest with the 40 lb N rate and lowest with the 240 lb N rate. With respect to harvest date; yields and sugar content were highest with the Nov 1 harvest, followed by Oct 1 and Sept 1. However, net grower payment (with early harvest incentives) did not follow sugarbeet yields. Around 120 lbs N provided the highest payment (160 lbs N followed by 80 lbs and 120 lbs). The payment was somewhat lower with the high nitrogen rates (200 and 240 lbs). The 0 and 40 lb N rates had the lowest payment. Oct 1 had the highest payment followed by Sept 1 and Nov 1. The percent canopy closure and level of canopy green color increased with nitrogen rates. The trials had favorable sugarbeet stands (around 170 beets/100 ft) and low disease levels.

Net \$/A: Assume a \$40 beet payment and trial average RWST.

Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season MICHIGAN SUGAR Average of 4 years, 5 Trials (2014 - 2018) (Page 2 of 6)

Nitrogen Rate and Harvest Date

No.	N. Rate Ib ai/A	Harvest Date	Net \$/A	Net \$/T	RWSA	RWST	T/A	% Sugar
5	160	1-Sep	\$1,521	\$62.3	6395	246	26.3	16.7
4	120	1-Sep	\$1,426	\$62.4	5976	244	24.3	16.8
6	200	1-Sep	\$1,423	\$60.8	6149	242	25.7	16.5
3	80	1-Sep	\$1,420	\$63.0	5775	244	23.7	16.7
7	240	1-Sep	\$1,398	\$59.8	6149	241	25.8	16.5
2	40	1-Sep	\$1,258	\$68.7	4625	251	18.7	17.0
1	0	1-Sep	\$868	\$66.6	3072	239	12.9	16.3
Av	verage		\$1,330.6	\$63.37	5448.7	243.9	22.49	16.64

Average	\$1,330.6	\$63.37	5448.7	243.9	22.49	16.64

No.	N. Rate Ib ai/A	Harvest Date	Net \$/A	Net \$/T	RWSA	RWST	T/A	% Sugar
3	80	1-Oct	\$1,564	\$53.4	8264	269	30.9	18.1
5	160	1-Oct	\$1,563	\$51.9	8439	266	32.2	17.9
4	120	1-Oct	\$1,505	\$51.9	8058	263	31.2	17.9
7	240	1-Oct	\$1,478	\$50.9	8296	267	31.6	18.0
6	200	1-Oct	\$1,449	\$51.4	8016	267	30.7	18.0
2	40	1-Oct	\$1,235	\$54.3	6577	279	24.1	18.5
1	0	1-Oct	\$974	\$53.5	5044	271	19.0	18.0
Av	verage		\$1,395.4	\$52.47	7527.7	268.9	28.53	18.06

No.	N. Rate Ib ai/A	Harvest Date	Net \$/A	Net \$/T	RWSA	RWST	T/A	% Sugar
5	160	1-Nov	\$1,405	\$40.9	10459	283	37.2	18.7
4	120	1-Nov	\$1,390	\$40.8	10340	279	37.4	18.6
3	80	1-Nov	\$1,378	\$41.3	10073	281	36.0	18.7
6	200	1-Nov	\$1,359	\$40.7	10317	284	36.6	18.8
7	240	1-Nov	\$1,329	\$38.8	10328	275	37.8	18.4
2	40	1-Nov	\$1,190	\$42.8	8734	294	29.8	19.3
1	0	1-Nov	\$961	\$42.4	6811	288	23.7	18.9
A٧	/erage		\$1,287.4	\$41.10	9580.3	283.4	34.07	18.77

Average	\$1,287.4	\$41.10	9580.3	283.4	34.07	18.77
LSD 5%	73.3	2.98	934.6	10.5	2.58	0.58
CV %	9.7	10.0	21.9	7.0	16.0	5.8

Net \$/A: Assume a \$40 beet payment and trial average RWST.

Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season

MICHIGAN SUGAR 4 years, 5 Trials (2014 - 2018)

(Page 3 of 6)

Nitrogen Rate and Year of Trial

No.	N. Rate Ib ai/A	Year	Net \$/A	Net \$/T	RWSA	RWST	T/A	% Sugar
5	160	2015	\$1,791	\$60.0	8078	266	30.2	17.6
7	240	2015	\$1,693	\$58.1	7864	265	29.5	17.6
6	200	2015	\$1,583	\$59.5	7344	268	27.1	17.8
3	80	2015	\$1,549	\$62.3	6771	269	25.2	17.8
4	120	2015	\$1,505	\$63.5	6724	279	24.0	18.3
2	40	2015	\$1,337	\$65.2	5722	278	20.5	18.4
1	0	2015	\$1,098	\$65.7	4813	275	17.2	18.1
No.	N. Rate Ib ai/A	Year	Net \$/A	Net \$/T	RWSA	RWST	T/A	% Sugar
5	160	2016	\$1,309	\$42.2	7913	239	32.3	16.2
4	120	2016	\$1,296	\$42.1	7799	235	32.4	16.0
3	80	2016	\$1,285	\$44.4	7555	245	30.1	16.5
6	200	2016	\$1,275	\$41.9	7869	240	32.1	16.3
2	40	2016	\$1,270	\$47.6	7330	256	27.9	17.1
7	240	2016	\$1,258	\$40.2	7843	235	32.8	16.0
1	0	2016	\$941	\$47.6	5430	251	20.9	16.8
No.	N. Rate Ib ai/A	Year	Net \$/A	Net \$/T	RWSA	RWST	T/A	% Sugar
5	160	2017 A	\$1,340	\$59.2	8129	301	26.8	20.1
4	120	2017 A	\$1,292	\$56.5	7832	287	27.2	19.5
3	80	2017 A	\$1,264	\$57.1	7619	291	26.0	19.6
6	200	2017 A	\$1,254	\$58.3	7692	297	25.8	19.9
7	240	2017 A	\$1,180	\$58.5	7507	298	25.1	19.9
2	40	2017 A	\$990	\$59.9	5925	304	19.4	20.1
1	0	2017 A	\$683	\$56.8	4012	290	13.7	19.2
No.	N. Rate Ib ai/A	Year	Net \$/A	Net \$/T	RWSA	RWST	T/A	% Sugar
3	80	2017 B	\$1,359	\$51.7	8243	265	30.7	18.2
4	120	2017 B	\$1,241	\$50.6	7753	259	29.5	18.0
7	240	2017 B	\$1,200	\$52.6	7725	268	28.7	18.4
6	200	2017 B	\$1,169	\$53.7	7421	275	26.6	18.7
5	160	2017 B	\$1,131	\$54.0	7075	276	25.5	18.6
2	40	2017 B	\$953	\$54.1	5717	276	20.6	18.6
1	0	2017 B	\$538	\$49.8	3303	256	12.6	17.2
No.	N. Rate Ib ai/A	Year	Net \$/A	Net \$/T	RWSA	RWST	T/A	% Sugar
5	160	2018	\$1,909	\$43.2	10961	244	44.7	16.4
4	120	2018	\$1,868	\$45.8	10515	251	41.6	16.9
3	80	2018	\$1,814	\$47.2	9998	253	39.1	17.0
6	200	2018	\$1,772	\$41.4	10476	241	43.2	16.2
7	240	2018	\$1,677	\$39.8	10350	240	42.6	16.2
2	40	2018	\$1,588	\$49.6	8534	259	32.6	17.4
1	0	2018	\$1,412	\$50.8	7320	257	28.3	17.2
LS	5D 5%		96.6	2.1	754.2	9.0	2.34	0.50
C\	/ %		10.1	5.52	14.0	4.7	11.5	3.9

Net \$/A: Assume a \$40 beet payment and trial average RWST.

Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season

Blumfield West, Richville - 2018

(Page 4 of 6)

Trial Quality: Good Variety: C-675 Planted: April 26

Harvested: Sept 1, Oct 1, Nov 1 Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Clay Loam

% OM: 2.9 **pH**: 7.1 **CEC**: 16.4 **P:** above opt **K**: above opt

Mn: high B: med Added N: See trts.

Prev Crop: Rye

Rhizoc Level: Low Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches Rainfall: 22.3 inches

Application: 2X2 on planter, 4 lf stage incorporated with fluted coulter (between rows)

No.		ogen R b ai/Acı 2X2		Harvest Date	Net \$	5/A	Net	\$/T	RWS	SA	RW	/ST	T/	' A		/s		⁄₀ JP
8	80	40	40 40	1-Oct	\$2,029	а	\$47	fg	11271	С	259	d	43.6	bc	17.2	е	96.0	bcd
13	160	40	120	1-Sep	\$2,017	ab	\$50	d	8396	def	209	h	40.1	d	14.7	j	94.1	е
10	120	40	80	1-Sep	\$1,937	abc	\$56	С	7837	fg	226	fg	34.6	fg	15.7	hi	94.3	е
14	160	40	120	1-Oct	\$1,931	a-d	\$42	hi	11283	С	245	е	46.0	abc	16.4	f	95.9	cd
11	120	40	80	1-Oct	\$1,896	а-е	\$43	h	10853	С	245	е	44.3	bc	16.5	f	95.6	d
16	200	40	160	1-Sep	\$1,864	b-e	\$48	ef	8027	efg	207	h	38.7	de	14.5	j	94.3	е
17	200	40	160	1-Oct	\$1,840	c-f	\$41	ij	11037	С	244	е	45.2	abc	16.3	fg	95.9	cd
20	240	40	200	1-Oct	\$1,801	c-g	\$40	jk	11072	С	244	е	45.4	abc	16.4	fg	95.7	d
7	80	40	40	1-Sep	\$1,771	d-h	\$56	С	7008	hi	221	g	31.7	h	15.4	i	94.2	е
15	160	40	120	1-Nov	\$1,757	e-h	\$36	lm	13132	а	272	С	48.2	а	17.9	cd	96.4	ab
12	120	40	80	1-Nov	\$1,737	e-h	\$38	kl	12695	ab	279	abc	45.6	abc	18.4	abc	96.2	bcd
9	80	40	40	1-Nov	\$1,691	f-i	\$39	jk	12095	b	282	ab	43.0	С	18.5	ab	96.2	abc
4	40	40	0	1-Sep	\$1,653	g-j	\$60	b	6337	ij	229	fg	27.6	i	15.9	ghi	94.3	е
18	200	40	160	1-Nov	\$1,637	g-j	\$36	m	12585	ab	273	bc	46.1	abc	18.0	cd	96.4	ab
5	40	40	0	1-Oct	\$1,620	hij	\$48	f	8838	d	260	d	34.0	fgh	17.3	е	95.9	bcd
21	240	40	200	1-Nov	\$1,618	hij	\$35	m	12722	ab	273	bc	46.5	ab	18.1	bcd	96.2	bcd
19	240	40	200	1-Sep	\$1,609	hij	\$45	g	7271	gh	203	h	35.8	f	14.3	j	94.0	е
1	0	0	0	1-Sep	\$1,540	ijk	\$63	а	5695	j	231	f	24.6	j	16.0	fgh	94.5	е
6	40	40	0	1-Nov	\$1,509	jk	\$41	hij	10560	С	287	а	36.9	ef	18.8	а	96.3	abc
2	0	0	0	1-Oct	\$1,415	kl	\$50	de	7492	gh	263	d	28.5	i	17.6	de	95.7	d
3	0	0	0	1-Nov	\$1,282	I	\$40	ij	8772	de	276	bc	31.8	gh	18.0	bcd	96.7	а
Av	erage				\$1,72	1.6	\$45	5.3	9760).9	24	9.0	38.	.97	16	.75	95	.46
LS	SD 5%				144.	.8	1.	7	724	.4	8	.2	2.	72	0.	47	0.	46
C\	/ %				6.6	5	3.	0	5.9)	2	.6	5.	.5	2	.2	0	.4

Average	\$1,721.6	\$45.3	9760.9	249.0	38.97	16.75	95.46
LSD 5%	144.8	1.7	724.4	8.2	2.72	0.47	0.46
CV %	6.6	3.0	5.9	2.6	5.5	2.2	0.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and Company average RWST.

Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

^{*} Nitrogen Rate: Nitrogen at planting (2X2) = 8 gal 28% N, 6 gal 10-34-0 and 4 gal ThioSul for a total of 40 lbs ai/A at planting, and at the 4 lf stage 28% N was the source, applied between rows with fluted coulter.

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season Blumfield West, Richville - 2018 (Page 5 of 6)

No.		ogen R b ai/Acr 2X2		Harvest Date	Net \$/A	Net \$/T	Live Beets/ 100 ft	Dead Beets/ 100 ft	Vigo 0-1		Co	lor	Si	ze
8	80	40	40	1-Oct	\$2,029 a	\$47 fg	178	0.7	8.4	bc	7.0	bcd	7.4	abc
13	160	40	120	1-Sep	\$2,017 ab		176	0.7	8.4	bc	6.7	cd	8.3	а
10	120	40	80	1-Sep	\$1,937 ab	\$56 c	183	0.5	8.2	С	7.0	bcd	6.9	bcd
14	160	40	120	1-Oct	\$1,931 a-c	\$42 hi	174	1.2	8.9	ab	7.3	abc	8.0	ab
11	120	40	80	1-Oct	\$1,896 a-	\$43 h	171	0.7	8.5	bc	6.7	cd	7.4	abc
16	200	40	160	1-Sep	\$1,864 b-6	\$48 ef	181	0.7	9.1	а	7.7	abc	8.6	а
17	200	40	160	1-Oct	\$1,840 c-	\$41 ij	171	0.2	9.0	ab	7.7	abc	8.6	а
20	240	40	200	1-Oct	\$1,801 c-g	\$40 jk	174	0.5	8.6	abc	8.3	а	8.0	ab
7	80	40	40	1-Sep	\$1,771 d-l	\$56 c	173	1.0	8.5	bc	7.3	abc	6.9	bcd
15	160	40	120	1-Nov	\$1,757 e-l	\$36 lm	170	0.3	8.5	bc	7.3	abc	8.0	ab
12	120	40	80	1-Nov	\$1,737 e-l	\$38 kl	170	1.0	8.0	cd	7.3	abc	6.9	bcd
9	80	40	40	1-Nov	\$1,691 f-i	\$39 jk	169	1.0	8.1	cd	7.7	abc	7.4	abc
4	40	40	0	1-Sep	\$1,653 g-	\$60 b	174	0.9	7.6	de	4.3	f	6.0	d
18	200	40	160	1-Nov	\$1,637 g-	\$36 m	176	1.5	9.0	ab	7.0	bcd	8.3	а
5	40	40	0	1-Oct	\$1,620 hi	\$48 f	174	0.7	7.4	ef	4.7	f	6.6	cd
21	240	40	200	1-Nov	\$1,618 hi	\$35 m	174	1.0	8.5	bc	8.0	ab	7.7	abc
19	240	40	200	1-Sep	\$1,609 hi	\$45 g	180	0.7	8.6	abc	8.3	а	7.4	abc
1	0	0	0	1-Sep	\$1,540 ijk	\$63 a	173	0.2	7.2	ef	4.7	f	6.6	cd
6	40	40	0	1-Nov	\$1,509 jk	\$41 hij	175	1.7	7.3	ef	5.0	ef	6.6	cd
2	0	0	0	1-Oct	\$1,415 kl	\$50 de	169	0.2	6.9	f	5.0	ef	6.6	cd
3	0	0	0	1-Nov	\$1,282 I	\$40 ij	170	1.0	7.1	ef	6.0	de	6.6	cd
Av	erage				\$1,721.6	\$45.3	174.1	8.0	8.1	8	6.	71	7.3	36
	D 5%				144.8	1.7	n.s.	n.s.	0.5	1	1.	03	1.0	06
	/ %				6.6	3.0	4.1	152.2	4.9	9		2.1	11	.3
3 Av LS	0 verage SD 5% / %	0	0	1-Nov	\$1,415 kl \$1,282 l \$1,721.6 144.8	\$50 de \$40 ij \$45.3 1.7 3.0	170 174.1 n.s. 4.1	1.0 0.8 n.s. 152.2	7.1 8.1 0.5 4.9	ef 8 1	6.0 6.	de 71 03	6.6 7.3)(

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and Company average RWST.

Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

^{*} Nitrogen Rate: Nitrogen at planting (2X2) = 8 gal 28% N, 6 gal 10-34-0 and 4 gal ThioSul for a total of 40 lbs ai/A at planting, and at the 4 lf stage 28% N was the source, applied with fluted coulter.

^{**} Vigor: 0 to 10 rating, 10 is the best

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season Blumfield West, Richville - 2018 (Page 6 of 6)

Nitrogen Rate Effect

No.	L	ogen R b ai/Acı	re	Net \$/	A	RWS	Ą	RWS	т	T/A	١	% SU(C	% CJP	% Canopy	
	Total	2X2	4 If												Closure	•
5	160	40	120	\$1,902	а	10937	а	242	С	44.8	а	16.3	С	95.5	86.0 b)
4	120	40	80	\$1,857	ab	10462	b	250	b	41.5	b	16.8	b	95.4	82.0 c	;
3	80	40	40	\$1,830	ab	10125	b	254	ab	39.4	С	17.1	ab	95.5	83.0 b	С
6	200	40	160	\$1,780	b	10550	ab	242	С	43.3	ab	16.3	С	95.5	90.0 a	1
7	240	40	200	\$1,676	С	10355	b	240	С	42.6	b	16.2	С	95.3	86.0 b	С
2	40	40	0	\$1,594	С	8578	С	259	а	32.8	d	17.3	а	95.5	74.0 d	1
1	0	0	0	\$1,412	d	7320	d	257	а	28.3	е	17.2	а	95.6	71.0 e	÷
Δ.				¢4 704	C	0700	0	0.40	0	20.0	7	40.7	· F	05.40	04.0	_
	verage			\$1,721	٥.	9760.	9	249.	U	38.9	1	16.7	5	95.46	81.8	_
LS	SD 5%			83.6		461.7	7	6.1		1.92	2	0.3	5	n.s.	4.00	╛
C,	V %			6.4		6.3		3.3		6.5		2.8	3	0.4	5.9	

Harvest Date Effect

No.	Harvest Date	Net \$/ <i>/</i>	Ą	RWS	١.	RWS	т	T/A		% SUC	;	% CJP		% Canopy Closure
2	Oct 1	\$1,790	а	10264	b	251	b	41.0	b	16.8	b	95.8	b	82.0
1	Sept 1	\$1,770	а	7224	С	218	С	33.3	С	15.2	С	94.2	С	82.0
3	Nov 1	\$1,604	b	11794	а	277	а	42.6	а	18.2	а	96.3	а	81.0
A۱	verage	\$1,721.	6	9760.9	9	249.0)	38.9	7	16.7	5	95.46	Ĝ	81.80
LS	SD 5%	54.7		273.8	,	3.1		1.03	3	0.18	3	0.17	'	n.s.
C/	V %	6.6		5.9		2.6		5.5		2.2	Ť	0.4		4.9

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Nitrogen was applied at 0, 40, 80, 120, 160, 200 and 240 lbs ai/A and harvested on Sept 1, Oct 1 and Nov 1. Sugarbeet yields increased significantly from 0 lbs N to 120-160 lbs N and then leveled off. The highest sugar levels were at 0, 40 and 80 lbs and the lowest sugars were with 240 lbs N. With respect to sugarbeet yields, the highest yields were on Nov 1, followed by Oct 1 and then Sept 1. Grower income did not follow yields because of the early harvest incentive program. Oct 1 had the highest dollar returns followed by Sept 1 and Nov 1.

Net \$/A: Assume a \$40 beet payment and trial average RWST.

Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

Evaluate Plant Tuff (Silicon Fertilizer) Applications in Sugarbeet Production

Blumfield West, Richville, MI - 2018

Trial Quality: Good Variety: C-675 Planted: Apr 26

Harvested: Oct 4

Plots: 6 Rows X 38 ft, 4 reps

Pow Spacing: 22 inches

Row Spacing: 22 inches

Soil Info: Clay Loam

% OM: 2.9 **pH:** 7.1 **CEC:** 16.4 **P:** above opt **K:** above opt

Mn: high B: med Added N: 130 lbs Prev Crop: Rye

Application: Broadcast, Pre-plant Incorporated, Spring Application

Rhizoc Level: Low Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches Rainfall: 24.1 inches

No.	Treatment	Rate/A	Applic Timing	% Cerc Damage	Alt Rating** 1-6	Vigor Rating*** 0 10	Beets / 100 ft	RWSA	RWST	T/A	% SUC	% CJP
				4-Oct	4-Oct	7-Sep	27-Jul					
2	Plant Tuff	1 Tons	PPI	3.3	4.0	7.6	184	10611	246	43.2	16.6	95.4
1	Plant Tuff	0.5 Tons	PPI	3.4	3.8	7.6	176	10702	249	42.9	16.9	95.6
3	Untreated			3.4	4.3	7.7	179	10385	239	43.4	16.5	95.5
Ave	erage			3.40	4.00	7.70	179.8	10566.0	245.0	43.20	16.70	95.50
LSI	D 5%			0.30	0.40	0.40	8.9	326.1	6.9	1.20	0.40	0.30
CV	%			8.2	11.3	5.9	5.2	3.2	3.0	2.8	2.3	0.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Plant Tuff is a Silicon based fertilizer that also contains other beneficial nutrients. Previous proprietary strip trials showed an increase in root yield while maintaining sugar content. Small plot replicated trials were conducted in 2018 by Michigan Sugar Company. Spring applications of Plant Tuff Silicon Fertilizer were made at both the 0.5 and 1 ton per acre rate. The 0.5 ton application rate appeared to improve Alternaria control, as well as RWST. Another trial will be completed in 2019 with the application of fertilizer being completed in the fall of 2018. Multiple harvest dates will be studied as well as roots from the trial placed into Storage Trials to determine any benefits of the treatments.

^{**} Alternaria: 1-6 ratings, 1 is the best *** Vigor: 0 to 10 ratings, 10 is best

Planted:

Pop-up Fertilizer on Sand Wishowski Farms, Auburn - 2018

Trial Quality: Very good Soil Info: Sand Rhiz Control: Good control: Quadris 6

Variety: SX-1243 RR Fertilizer: See fertilizer program in

the comments.

Cerc Control: Fair control: See below

for materials

Harv/Samp: Nov 2 / Oct 23

Plot Size: 8 reps Prev Crop: Corn

May 1

Row Spacing: 30 inch Weather: Dry until mid July, then Other Pests: N/A

Seeding Rate: 54,000 good weather

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP		lation of Row
							12 Day	35 Day
In Furrow Pop-up + 2x2	\$962	5729	235	24.4	16.0	96.5	161	202
2x2 Only	\$832	4960	233	21.2	15.9	96.4	143	173
LSD 5%		298	ne	1.1	ne	ns	10	13
LGD 370		230	ns	1.1	ns	115	10	13
CV %	_	5	2	4.3	1.8	0.4	6	6

Comments: This trial was performed to evaluate the potential benefit of in-furrow pop-up fertilizer on a sand soil type. Prior to the trial the grower believed that pop-up fertilizer was really benefitting them, especially in their sand ridges and lighter soils. The grower had a field with a larger section of sandy soil with most of the trial area having a CEC that ranged from 4.5-8.5. This would likely be similar to the sand ridges that are in many fields. In addition to the light soil texture, this field also experienced a drought in the first half of the season that significantly impacted yields. It is important to note that the grower is also doing 2x2 starter fertilizer and both treatments had 2x2 starter. The pop-up treatment was in addition to the 2x2 starter. The grower used a Schaffert Rebounder Seed Firmer with a Y split at the end to deliver the pop-up fertilizer. Both tonnage and RWSA were significantly increased by using the pop-up fertilizer in this situation. In this trial, the pop-up treatment also increased stand. The fertilizer program was as follows: Fall: 150# potash & 200# pel lime. Pop-up: 2.5 gallons of water + 2 gallons of Nachurs Triple Option (4-13-17) + 1 pt of Mn + Zn + 4 oz. of Kapre Spectra Fulvic Acid. 2x2: 15 gal 28%, 4 gal 10-34-0, 2 gal K Flex. S.D.: 32 gal 28% + 1 qt of B & Am Thio. Leafspot materials: 1. Topguard EQ, 2. Super Tin, 3. Inspire XL, 4. Super Tin, 5. Bagde SC. All sprays included EBDC and Regard.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment, an average RWST of 238.

NDemand & Boron with Leafspot Sprays Richmond Brothers, Pigeon - 2018

Trial Quality: Excellent Soil Info: Loam Rhizoc Control: Excellent control: Quadris

Variety: C-G675 Fertilizer: See comments for the I.F. & 8-10 leaf

Planted: April 28 program Cerc Control: Excellent Control: See

Harv/Samp: Nov 5 / Oct 24 comments for materials

Plot Size: 6 reps Prev Crop: Wheat / Radish

Row Spacing: 22" Weather: Dry until mid July and Other Pests: N/A

Seeding Rate: 72,000 then good weather

Treatment	Net \$/A	RWSA	RWST	T/A	% Sugar	% CJP
NDemand + Boron	\$1,962	11835	270	43.6	18.1	96.5
Check	\$1,943	11639	273	42.3	18.2	96.2
LSD 5%	_	ns (486)	ns (11)	1.0	ns (0.5)	ns (0.6)
CV %	_	3	3	1.6	2.5	0.6

Comments: This was an excellent quality trial with low coefficient of variation. Richmond Brothers believe that including foliar nitrogen and boron in their spray program has helped with plant health which is helping in both leaf spot control and sugar/yield. This trial was performed to evaluate whether those perceived benefits are actually occurring. The foliar nitrogen product was NDemand 30L (1 gallon per acre) and the boron product was FOLI-GRO Boron 10% (1 pint per acre). Both of these products are from Wilbur Ellis. The NDemand and FOLI-GRO Boron were both applied with the 1st and 3rd leafspot sprays only. The leafspot control across both treatments was excellent and no differences were able to be seen due to the low levels. NDemand and FOLI-GRO Boron did statistically improve tonnage at 95% confidence, but not RWSA. RWST was not effected with these treatments. Prior to the trial, Richmond Brothers believed that the benefits would be more to quality than to tonnage. It is possible that if a variety that was less tolerant to leafspot were used, the benefits to disease control and sugar quality may have been recognized. The total cost for adding the 2 applications of NDemand and FOLI-GRO Boron was \$17.60. The leafspot program was as follows: 6/25 Proline + EBDC + NDemand + Boron, 7/17 Flint + EBDC, 8/1 Inspire XT + EBDC + NDemand + Boron, 8/16 Topguard + EBDC, 9/6 Proline + EBDC, 10/1 EBDC. All applications include Reguard sticker and Crosshair drift and deposition aid. The fertilizer program was: PP: 20 gal 28%; 2x2: 7 gal 28%, 10 gal 10-34-0, 4 gal Thiosul, + 2 qt Mn, 1.5 qt B; Streamer at 6-8 leaf: 13 gal 28% + 7 gal H2O.

Net \$/A: Gross payment with the Ndemand & B cost deducted. Calculated assuming a \$40 payment and a company average RWST of 238. **Bold:** Results are not statistically different from top ranking treatment in each column.

AgBioResearch

Evaluating Sugarbeet Nitrogen Application Strategies

Kurt Steinke and Andrew Chomas, Michigan State University See soil.msu.edu for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 30, 2018 (Harvest 10/18/18)	Trt's: See below
Soil Type : Clay loam; 2.1% OM; 8.0 pH; 34 ppm P; 185 ppm K	Population : 4 in. spacing
Variety: B1399	Replicated : 4 replications

N Strategy ^a	RWSA	RWST	Tons/A	% Sugar
0 – Check	6750	247	27	16.7
Coulter SD 2-4 lf	7741	243	32	16.4
Y-Drop SD 2-4 lf	8039	236	34	16.1
Pre-Plant Inc.	8017	239	33	16.2
Surface Band SD 2-4 lf w/ UI ^b	8936	245	35	16.6
Rain Drop SD 2- 4lf	8199	241	34	16.3
Streamer SD 2-4 lf	7318	247	30	16.6
LSD(0.10) ^c	886	NS	3.2	NS

^a ALL TREATMENTS OTHER THAN CHECK RECEIVED 40 N 2X2 AT-PLANT.

Summary: Trial quality was good to very good. Please note all treatments other than the check received 2x2 N at-plant (40 lb./A). Sidedress N applications were completed at the 2-4 leaf stage on May 31 for a total N application rate of 160 lb./A. Lack of soil moisture and precipitation may limit sugarbeet response to N timing and sidedress placement strategies. Dry June and July soil conditions likely limited N movement and wet August soils inhibited sugar accumulation resulting in few differences between N application methods. The use of a urease inhibitor with surface banded N did not appear to affect root yield compared to other surface applied N indicating that although soils were dry volatile N loss conditions may not have been present.

^b UI, Urease inhibitor

^c LSD, least significant difference between means within a column at ($\alpha = 0.10$).

AgBioResearch

Sugarbeet Nitrogen Response Following Corn

Kurt Steinke and Andrew Chomas, Michigan State University See soil.msu.edu for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 30, 2018 (Harvest 10/18/18)	N Rates: See below
Soil Type : Clay loam; 2.1% OM; 8.0 pH; 34 ppm P; 185 ppm K	Population : 4 in. spacing
Variety: Crystal 675	Replicated : 4 replications

N Trt.				
(Total lb. N/A)	RWSA	RWST	Tons/A	% Sugar
0 – Check	6224	261	24	17.6
40	8632	272	32	18.1
80	8347	267	31	17.9
120	8731	275	32	18.3
160	9316	268	35	18.0
200	8733	266	33	17.7
240	8790	254	35	17.2
LSD _(0.10) a	1338	9	4.4	0.4

^a LSD, least significant difference between means within a column at ($\alpha = 0.10$).

N Trt.	Gross Grower	Net Economic Return Minus N	Net Economic Return Minus N Costs and Trucking (\$/A) ^b
(Total lb. N/A) 0 – Check	Payment (\$/A) 1076	Costs (\$/A) ^a 1076	986
40	1495	1477	1357
80	1421	1386	1270
120	1511	1458	1338
160	1611	1541	1410
200	1507	1419	1285
240	1527	1421	1290

^{a, b} Gross grower payment and net economic returns based upon a \$41/ton base payment with volume and quality incentives, an N price of \$0.44/lb., and trucking costs of \$3.75/T.

Summary: Trial quality was good. All treatments received 40 lbs. N/A as 28%, 20 lbs. P₂O₅/A, 50 lbs. K₂O/A. and 2 lbs. Mn/A as starter placed 2x2 on April 30. Sidedress N applications were completed at the 2-4 leaf stage on May 30. Although nitrogen rates above 40 lb N/A resulted in few differences in tonnage and quality, profitability was maximized at 160 lb N/A. Gross payment and net returns were maximized at 160 lb N/A (40 N 2x2 and 120 N sidedress).

AgBio Research

Does Sugarbeet Row Spacing Affect the Need for Starter Nitrogen?

Kurt Steinke¹, Brian Groulx², Seth Purucker¹, and Andrew Chomas¹

Michigan State University and ² Michigan Sugar Company

See soil.msu.edu for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv.
Planting Date : April 30, 2018 (Harvest 09/27/18)	Trts: See below
Soil Type : Clay Loam; 2.1 OM; 8.0 pH; 34 ppm P; 185 ppm K	Population : 4 in. spacing
Variety: Crystal 675	Replicated: 4 replications

Row spacing	RWSA	RWST	Tons/A	% Sugar	% CJP
22 inch	5725	232	26	16.1	95.2
30 inch	6697	245	27	16.8	95.9
LSD(0.10) ^a	NS	9	NS	0.5	0.23

^a LSD, least significant difference between means within a column at ($\alpha = 0.10$).

Summary: Study was undertaken to help determine whether row spacing impacted the need for starter N applied 2x2 at planting. Four treatments were evaluated in a split-plot design and included: 1) 22 inch rows with 40 lbs. N/A 2x2 and 120 N sidedressed (2-4 lf), 2) 22 inch rows with 40 lbs. N/A applied PRE and 120 N sidedressed (2-4 lf), 3) 30 inch rows with 40 lbs. N/A 2x2 and 120 N sidedressed (2-4 lf), and 4) 30 inch rows with 40 lbs. N/A applied PRE and 120 N sidedressed (2-4 lf). Treatments with 2x2 received 40 lbs. N/A using UAN 28% two inches below and two inches to the side of the seed at planting. Treatments with N applied PRE received 40 lbs. N/A using urea with a urease inhibitor broadcast applied immediately following planting. Sidedress N applications were completed at the 2-4 leaf stage on May 30 for a total N application rate of 160 lb./A.

Due to no interaction between row spacing and starter N, only main effects of row spacing on sugar yield and quality are displayed as starter N did not impact these parameters. No differences in tonnage or RWSA were observed due to row spacing. However, percent sugar, purity, and RWST were significantly greater with 30 inch as compared to 22 inch rows. June through July precipitation was 36% below 30-year means indicating dry soil conditions likely limited N movement and plant growth following both 2x2 and sidedress N applications. Starter N applied 2x2 did achieve row closure 10-14 days sooner compared to no starter N applications. Row closure was achieved 7-10 days earlier in 22 inch rows as compared to 30 inch rows but did not translate into greater sugar production. Starter N can offer stand consistency across variable spring and summer weather conditions but did not result in a measureable yield response in 2018. Trial will be repeated in 2019.

AgBio Research

Sugarbeet Response to Starter Fertilizer, N Rate, and Plant Population

Seth Purucker, Andrew Chomas, and Kurt Steinke, Michigan State University See soil.msu.edu for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 30, 2018 (Harvest 10/18/18)	Trts: See below
Soil Type : Clay Loam; 2.1% OM; 8.0 pH; 34 ppm P; 185 ppm K	Population : 3 ½ & 4 in. spacing
Variety: Crystal 675	Replicated : 4 replications

			Gross	Net Economic	Net Economic
N Rate and			Grower	Return	Return Minus N
2x2			Payment	Minus N	Costs and
Interaction	Tons/A	RWSA	(\$/A)	Costs (\$/A)a	Trucking (\$/A)b
0 N w/ 2x2	$23c^{\dagger}$	6046d	1041d [†]	1041c	955c
0 N w/o 2x2	24c	6310d	1074d	1074c	986c
80 N w/ 2x2	31b	8255b	1416bc	1381ab	1266ab
80 N w/o 2x2	28b	7530c	1292c	1257b	1150b
160 N w/ 2x2	36a	9253a	1590a	1520a	1386a
160 N w/o 2x2	30b	7754bc	1330bc	1260b	1147b
240 N w/ 2x2	34a	8385b	1438b	1333b	1206b
240 N w/o 2x2	34a	8252b	1421b	1316b	1187b
<i>P>F</i>	< 0.01	< 0.01	<0.01	<0.01	< 0.01

[†]Column values with the same lower case letter are not significantly different at α =0.10.

Summary: Trial quality was good to very good. Treatments consisted of two populations (3½ and 4 inch spacing which resulted in 50,000 or 60,000 seeds per acre), four N rates (0, 80, 160, 240 lbs. N/A), and 2x2 applied starter fertilizer (with and without). All treatments with starter fertilizer received 40 lbs. N/A as 28%, 20 lbs. P₂O₅/A, 50 lbs. K₂O/A, and 2 lbs. Mn/A applied 2 inches below and two inches to the side of the seed. Treatments at the 0 lbs. N/A rate did not receive any N in starter application only P, K, and Mn. Starter N was subtracted from sidedress N application rates. Sidedress N applications were completed at the 2-4 leaf stage on May 30 using 28% UAN.

An interaction between N rate and starter fertilizer significantly affected yield, RWSA, gross grower payment, and net economic returns. A total N rate of 160 lb. N/A (40 N 2x2 with 120 N sidedress) resulted in the best combination of tonnage, quality, and profitability. When starter N was not utilized, an additional 80 lb N/A were required to achieve maximum yield. Plant

^{a, b} Gross grower payment and net economic returns based upon \$41/ton base payment with volume and quality incentives, an N price of \$0.44/lb., and trucking costs of \$3.75/T.

population resulted in few difference in sugar quality. Overall N rate significantly affected RWST and % sugar with no improvements over 80 lb. N/A. Wet soil conditions from increased August and September rainfall likely decreased overall sugar contents.

Treatment	RWST	% Sugar	% CJP
Population, seeds A ⁻¹			
50,000	258 a [†]	17.2 a	96.3 a
60,000	260 a	17.4 a	96.3 a
<i>P>F</i>	NS	NS	NS
N Rate, lbs. N A ⁻¹			
0	266 a	17.7 ab	96.3 a
80	267 a	17.8 a	96.4 a
160	259 b	17.3 b	96.3 a
240	245 с	16.5 c	96.1 a
<i>P>F</i>	< 0.01	< 0.01	NS
Starter Fertilizer			
2x2	260 a	17.3 a	96.3 a
No 2x2	258 a	17.2 a	96.4 a
<i>P>F</i>	NS	NS	NS

[†]Column values with the same lower case letter are not significantly different at α =0.10.

Gross grower payment was maximized at 160 lbs. N/A with 2x2 application. However net economic return was maximized at 80 lbs. N/A with 2x2 application. Growers often perceive yield loss as a greater risk than profitability. However, greater tonnage and payment may not offset input costs and greater input intensities may impact disease development. Starter (2x2) applied N may provide opportunities to increase N efficiency, decrease overall N rates, and help address mid-season variable weather patterns. Trial will be repeated in 2019.

AgBioResearch

Sugarbeet tolerance to a potential new herbicide, tiafenacil

Christy Sprague, Gary Powell and Brian Stiles, Michigan State University

Location: Richville (SVREC)	Application timings : 7 & 3 DBP, and PRE
Planting Date: April 30, 2018	Herbicides: see treatments
Soil Type: Clay loam	O.M.: 2.3 pH: 8.0
Replicated: 4 times	Variety: ACH G515RR

Table 1. Sugarbeet injury, harvest stand, yield, and recoverable white sugar per acre (RWSA) for preplant and preemergence applications of various rates of tiafenacil^a.

Herbicide			Injury			
treatments ^a	Rate	Timing	(30 DAP)	Harvest Stand	Yield	RWSA
			%	-#/100' row -	-ton/A -	-lb/A $-$
No herbicide			0	204	27.2	6036
Tiafenacil	3 fl oz	7 DBP	22* ^b	184	26.0	5562
Tiafenacil	6 fl oz	7 DBP	64*	110*	21.1*	4585*
Tiafenacil	9 fl oz	7 DBP	77*	96*	16.2*	3232*
Gramoxone	4 pt	7 DBP	0	185	25.4	5360
Tiafenacil	3 fl oz	3 DBP	26*	163	26.5	5716
Tiafenacil	6 fl oz	3 DBP	66*	113*	18.9*	3897*
Tiafenacil	9 fl oz	3 DBP	84*	89*	14.6*	3039*
Gramoxone	4 pt	3 DBP	0	202	25.1	5508
Tiafenacil	3 fl oz	PRE	16	213	28.5	6368
Tiafenacil	6 fl oz	PRE	55*	155*	23.4	5023
Tiafenacil	9 fl oz	PRE	79*	113*	18.9*	4474*
Gramoxone	4 pt	PRE	0	176	25.4	5528
LSD _{0.05} ^c		11.5	17	44	5.2	1142

^a The study area was treated with Roundup PowerMax at 32 fl oz/A + ammonium sulfate at 17 lb/100 gal to keep the area weed-free.

Summary: Tiafenacil is a new herbicide active ingredient being examined as a potential preplant burndown herbicide. This herbicide is a Group 14 (PPO-inhibitor) herbicide. A field trial was conducted to determine the tolerance of sugarbeet to this herbicide applied preplant and preemergence. Gramoxone was also applied at the preplant and preemergence timings to serve as a no-residual herbicide control. All rates of tiafenacil caused sugarbeet injury at the three different application timings, 30 DAP. Injury increased with increasing rates of tiafenacil. Injury mostly consisted of sugarbeet stand loss and stunting. At harvest tiafenacil at the two higher rates (6 and 9 fl oz/A) resulted in significantly lower sugarbeet stand. Yield and recoverable white sugar per acre (RWSA) were also reduced, with the exception of the 6 fl oz/A rate of tiafenacil applied preemergence. The 3 fl oz/A rate of tiafenacil at any of the timings did not significantly reduce sugarbeet stand, yield or RWSA. Currently, it appears that the crop safety of this herbicide may not be adequate for use in sugarbeet. However, this herbicide should be examined further to determine what the weed control spectrum of this herbicide is at 3 fl oz/A rate and lower.

^b Injury, stand, yield and RWSA data with asterisks (*) are significantly different from the no herbicide control.

^c Means within a column greater than least significant difference (LSD) value are different from each other.

Sugarbeet tolerance to postemergence applications of Ultra Blazer tank-mixtures with glyphosate

Christy Sprague, Gary Powell and Brian Stiles, Michigan State University

Location: Richville (SVREC)	Application timings : 2-lf beets (May 23), 4-6 lf beets (June 5),
	12-If beets (June 19)
Planting Date: April 23, 2018 Herbicides: see treatments	
Soil Type: Clay loam	O.M.: 2.3 pH: 8.0
Replicated: 4 times	Variety: ACH G515RR

Table 1. Sugarbeet tolerance to POST applications of Ultra Blazer (aciflurofen) applied at various sugarbeet stages.

sugurocot stuges.		Injury	Injury	Injury		
Herbicide treatments ^a	Timing	(June 19)	(June 26)	(July 10)	Yield	RWSA
		%	%	—- % —	-ton/A -	- lb/A $-$
Roundup PowerMax (22/22/22 fl oz)		0	0	0	25.0	5612
Ultra Blazer (8/8/8 fl oz)	2, 4-6, 12 lf	29* ^b	25*	20*	20.5*	4641
Ultra Blazer (16/16/16 fl oz)	2, 4-6, 12 lf	28*	28*	24*	20.1*	4424*
Ultra Blazer (16 fl oz)	2-lf	3	0	0	24.9	5538
Ultra Blazer (24 fl oz)	2-lf	4*	1	0	22.9	5046
Ultra Blazer (24 fl oz)	4-6-lf	25*	9*	2	24.9	5159
Ultra Blazer (24 fl oz)	12-lf	0	20*	21*	21.6	4664
Ethotron (12 fl oz) + Ultra Blazer (24 fl oz)	2-lf	5*	2	0	23.2	5015
Ethotron (12 fl oz) + Ultra Blazer (24 fl oz)	4-6 lf	28*	13*	0	24.0	5270
Ethotron (12 fl oz) + Ultra Blazer (24 fl oz)	12 lf	0 2-	lf 24*	23*	21.6	4440*
Ethotron (12/12/12 fl oz)	2, 4-6, 12 lf	0	4	7	23.3	5259
LSD _{0.05} ^c		3.7	5.9	3.6	4.4	1016

^a Roundup PowerMax was included in all postemergence treatments at the rates listed in the first treatment. These treatments also included AMS at 17 lb/100 gal.

Summary: Options are extremely limited for POST control of glyphosate-resistant pigweed (waterhemp and Palmer) in sugarbeet. Ultra Blazer (aciflurofen) is an older Group 14 herbicide that has activity on pigweed species. A field trial was conducted to evaluate sugarbeet safety to POST applications of Ultra Blazer. All applications of Ultra Blazer resulted in sugarbeet injury. Injury symptoms from Ultra Blazer consist of leaf speckling/bronzing of the sugarbeet leaves. However, over time sugarbeet was able to grow out of some of this injury. Multiple applications of Ultra Blazer caused sugarbeet injury to persist and ultimately reduce yield by 5 tons/A. However, if a single application of Ultra Blazer was made at any of the application timings, sugarbeet yield was not affected. There are still several things that need to be examined before an Ultra Blazer label for sugarbeet is pursued. Questions that need to be answered include: 1) What level of sugarbeet injury are growers comfortable with?, 2) Will sugarbeet be able to outgrow this injury under different environments?, and 3) How effective will this herbicide be in controlling either glyphosate-resistant waterhemp or Palmer amaranth in sugarbeet.

^b Sugarbeet injury, yield and RWSA data with asterisks (*) are significantly different from the Roundup alone control.

^c Means within a column greater than least significant difference (LSD) value are different from each other.

Rotational crop safety with postemergence applications of ethofumesate

Christy Sprague, Gary Powell and Brian Stiles, Michigan State University

Location: Richville (SVR	EC)	Sugarbeet planting date: April 18, 2017
Corn planting date:	May 1, 2018	Soil Type: Clay loam
Soybean planting date:	May 16, 2018	O.M.: 2.6 pH: 6.9
Dry bean planting date:	June 19, 2018	Replicated: 4 times

Table 1. Tolerance of corn, soybean, and black beans the year following postemergence applications of high rates of ethofumesate^a.

anger twee or entertaineews :		30 d after	planting	
Herbicide treatments ^b	Timing	Injury	Stand	Yield
Corn 'Stine 9316'		%	- #/30' row -	— bu/A —
No herbicide		0	56	205
Ethofumesate (32/32/32/32 fl oz)	2-lf, + 2 WAT – 4 times	0	55	198
Ethofumesate (128 fl oz)	June 15	0	57	212
Ethofumesate (128 fl oz)	July 15	0	57	212
Ethofumesate (128 fl oz)	August 15	0	56	215
Soybean 'Stine 14RD62'				— bu/A —
No herbicide		0	178	76.6
Ethofumesate (32/32/32/32 fl oz)	2-lf, + 2 WAT – 4 times	0	161	76.1
Ethofumesate (128 fl oz)	June 15	0	178	78.7
Ethofumesate (128 fl oz)	July 15	0	171	74.5
Ethofumesate (128 fl oz)	August 15	0	175	76.4
Black bean 'Zenith'				cwt/A
No herbicide		0	157	31.3
Ethofumesate (32/32/32/32 fl oz)	2-lf, + 2 WAT – 4 times	0	158	30.8
Ethofumesate (128 fl oz)	June 15	0	153	30.9
Ethofumesate (128 fl oz)	July 15	0	150	30.8
Ethofumesate (128 fl oz)	August 15	0	153	31.7

^a Plots were kept weed-free with the Roundup PowerMax in corn and soybean and with Dual Magnum + Prowl H2O in dry bean.

Summary: Ethofumesate is a Group 18, selective herbicide used for weed control in sugarbeet. Historically, ethofumesate was primarily used preemergence as part of an overall program for residual weed control of key Michigan weeds. However, it can be used POST and over the past couple of years we have observed some positive results with split-POST ethofumesate at rates as high as 2 pt/A for glyphosate-resistant waterhemp control. The recent label change increased the POST ethofumesate rates from 12 to 128 fl oz/A. However, one of the issues with using some of these higher rates of ethofumesate POST is the current crop rotation restrictions. The current ethofumesate label states: do not rotate to any crops other than sugarbeets or ryegrass for 12 months following applications totaling more than 12 fl oz/A or 6 months following postemergence applications of 12 fl oz/A or less. In 2017 we established a plant back study to examine the crop safety of corn, soybean and dry bean the year following high application rates of ethofumesate. This year's results were extremely positive, in that there did not appear to be any ethofumesate carryover issues with any of the three crops. We established another trial in 2018 to get two years data and hopefully provide supporting data for a label change.

^b Herbicide treatments were applied postemergence to sugarbeet in 2017.

AgBio Research

Sugarbeet tolerance to overlapping residual herbicide programs

Christy Sprague, Gary Powell and Brian Stiles, Michigan State University

Location: Richville (SVREC)	Application timings : PRE (April 23), 2-lf beets (May 23),
	6-8 If beets (June 19)
Planting Date: April 23, 2018	Herbicides: see treatments
Soil Type: Clay loam	O.M.: 2.3 pH: 8.0
Replicated: 4 times	Variety: ACH G515RR

Table 1. Comparison of sugarbeet tolerance of two-passes of overlapping residual herbicide programs applied

POST alone and with ethofumesate (PRE) or a low rate of Dual II Magnum (PRE).

		Injury			
Herbicide treatmen	nts ^a	(7 DA-4-lf)	Harvest Stand	Yield	RWSA
PREs	POST at 2- and 6-lf beets	— % —	- #/100' row -	-ton/A -	-lb/A $-$
None	Roundup PowerMax (32/22 fl oz)	1	200	27.2	5799
None	Dual II Magnum (1/1 pt)	9	189	24.5	5392
None	Warrant (3/3 pt)	2	207	23.7	5143
None	Outlook (12/12 fl oz)	6	188	23.3	5039
Ethofumesate (2 pt)	Dual II Magnum (1/1 pt)	3	206	24.9	5562
Etho. (2 pt)	Warrant (3/3 pt)	11	180	21.9*	4811
Etho. (2 pt)	Outlook (12/12 fl oz)	18* ^b	180	23.9	5010
Etho. (2 pt)	Ethofumesate ^a (2/2 pt)	17*	197	25.5	5466
Dual II Magnum	Dual II Magnum (1/1 pt)	6	213	26.5	5768
(0.5 pt)					
Dual II Magnum	Warrant (3/3 pt)	11	192	21.5*	4583*
(0.5 pt)					
Dual II Magnum	Outlook (12/12 fl oz)	15*	206	26.2	5725
(0.5 pt)					
Dual II Magnum	Ethofumesate ^a (2/2 pt)	6	193	25.3	5429
(0.5 pt)					
LSD _{0.05} ^c		12	- NS -	4.62	1150

^a Roundup PowerMax was included in all postemergence treatments at the rates listed in the first treatment. These treatments also included AMS at 17 lb/100 gal. All POST applications of ethofumesate was applied with 1.5 pt/A of Destiny HC.

Summary: Overlapping residual herbicide programs may be the only way to effectively control glyphosate-resistant pigweed (waterhemp and Palmer) in sugarbeet. A field trial was conducted at the Saginaw Valley Research and Extension Center to determine what effect multiple applications of residual herbicides have on sugarbeet injury, stand, yield and recoverable white sugar per acre (RWSA). The Group 15 herbicides, Dual II Magnum, Outlook and Warrant were all evaluated at maximum rates allowed per season. These treatments were also evaluated after a preemergence application of ethofumesate or Dual II Magnum at a low rate (currently not labeled). Postemergence ethofumesate was also evaluated. Sugarbeet injury was greatest when Outlook followed the PREs of ethofumesate or Dual II Magnum. Three applications of ethofumesate also caused significant injury. None of these treatments resulted in a loss or yield or RWSA. The only treatments that caused reductions in yield consisted of two POST applications of Warrant following ethofumesate and Dual II Magnum (PRE). These treatments were also examined for waterhemp control and these studies should be repeated over more environments.

^b Injury, stand, yield and RWSA data with asterisks (*) are significantly different from the Roundup PowerMax alone control. ^c Means within a column greater than least significant difference (LSD) value are different from each other.

Waterhemp control with overlapping residual herbicide programs

Christy Sprague, Gary Powell and Brian Stiles, Michigan State University

Location: Isabella Country	Application timings : PRE (May 1), 2-If beets (May 30),
	6-8 If beets (June 21)
Planting Date: May 1, 2018	Herbicides: see treatments
Soil Type: Sandy loam	O.M.: 2.9 pH: 7.2
Replicated: 4 times	Variety: ACH G515RR

Table 1. Comparison of sugarbeet tolerance of two-passes of POST overlapping residual herbicide programs alone and with ethofumesate (PRE) or low rates of Dual II Magnum (PRE).

	and with emotamesate (FRE) of low rates		Vaterhemp cont	rol
Herbicide treat	ments ^a	June 21	July 23	August 9
PREs	POST applications at 2- and 6-lf beets	%	%	%
None	Roundup PowerMax (32/22 fl oz)	0	23	17
None	Dual II Magnum (1/1 pt)	40	50	23
None	Warrant (3/3 pt)	67	61	53
None	Outlook (12/12 fl oz)	73	76	74
Ethofumesate	Dual II Magnum (1/1 pt)	81*	78	73
(2 pt)				
Etho. (2 pt)	Warrant (3/3 pt)	71	83*	76
Etho. (2 pt)	Outlook (12/12 fl oz)	93*	90*	83*
Etho. (2 pt)	Ethofumesate ^a (1/1 pt)	75	88*	86*
Dual II Magnum	Dual II Magnum (1/1 pt)	91*	94*	90*
(0.5 pt)				
Dual II Magnum	Warrant (3/3 pt)	86*	87*	82*
(0.5 pt)				
Dual II Magnum	Outlook (12/12 fl oz)	98*	97*	94*
(0.5 pt)				
_	Ethofumesate ^a (1/1 pt)	93*	95*	91*
(0.5 pt)				
LSD _{0.05} ^c		19	15	15

^a Roundup PowerMax was included in all postemergence treatments at the rates listed in the first treatment. These treatments also included AMS at 17 lb/100 gal. All POST applications of ethofumesate was applied with 1.5 pt/A of Destiny HC.

Summary: Overlapping residual herbicide programs may be the only way to effectively control glyphosate-resistant pigweed (waterhemp and Palmer) in sugarbeet in the future. A field trial was conducted at a location in Isabella County with a high natural population of glyphosate- and ALS-resistant waterhemp. Several Group 15 herbicides, Dual II Magnum, Outlook and Warrant were evaluated at maximum rates allowed per season. These treatments were also evaluated after a preemergence application of ethofumesate or Dual II Magnum at a low rate (currently not labeled). Effective waterhemp control was variable (ranging from 82-94%), but was greatest through the beginning of August when PRE Ethofumesate was followed by two POST applications of Outlook or Ethofumesate. Additionally, Dual II Magnum at 0.5 pt PRE followed by two POST applications of Dual II Magnum, Warrant, Outlook or Ethofumesate were also effective. We will be continuing to examine and refine waterhemp control strategies in sugarbeet in the future.

^b Waterhemp control evaluations with asterisks (*) are similar to the best waterhemp control treatment.

^c Means within a column greater than least significant difference (LSD) value are different from each other.

Effect of Harvest Date on Sugarbeet Yield, Quality and Grower Income

Average of 9 years, 24 Locations

(Page 1 of 3)

Harvest: 6 Dates, Aug 15 to Nov 1

Seeding Rate: 4.5 inches

Plot Size: 6 rows X 38 ft, various reps

Beet Population: About 200 B/100'

No.	Harvest Date	Net \$/A	\$/To	\$/Ton		RWSA		RWST		T/A		JC	% CJP		Beets/ 100'
2	September 1	\$1,937	\$67	b	6449	е	216	е	29.7	d	15.1	d	94.2	d	201.7
3	September 15	\$1,908	\$61	С	7655	d	236	d	32.8	С	16.1	С	94.9	С	197.3
4	October 1	\$1,867	\$56	d	8829	С	257	С	34.9	b	17.4	b	95.0	С	195.5
5	October 15	\$1,814	\$50	е	10195	b	268	b	38.4	а	18.0	ab	95.5	b	200.5
6	November 1	\$1,794	\$49	е	11021	а	280	а	39.7	а	18.6	ab	95.8	а	196.4
1	August 15	\$1,789	\$78	а	4756	f	208	е	22.7	е	14.6	d	93.7	е	202.2
Avera	200	\$1,851.5	\$60.	1	8150.8	ρ	244.	1	33.0	1	16.6	\$5	94.8	7	198.94
	-														
LSD	SD 5% n.s.		3.6		382.6		10.5		1.58		0.63		0.32		n.s.
CV %		12.5	10.6)	8.2		7.5		8.4		6.6	3	0.6		6.2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: After 9 years of testing, the data shows numerical differences in net \$/acre, but no statistical difference.

Yield and sugar content gradually increase over the various harvest dates until the October 15 harvest where both yield and sugar increases tend to stabilize. Trials will continue to provide data to make adjustments to early delivery incentives.

Net \$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a trial average RWST.

Bold: Results are not statistically different from top-ranking treatment in each column.

Average of 4 Locations - 2018

Trial Quality: Good Rhizoc Level: Low

Cerc Control: Very Good Variety: C-675 Seeding Rate: 4.5 inches Planted: Blum W - April 26, Sylvester - April 27 Row Spacing: 22 inches

Harvested: See trts.

Plots: 6 rows X 38ft, 4 and 5 reps

Shaffner - May 1, Gerstenberger - May 1

No.	Harvest Date	Net \$/A	\$/To	n	RWSA		RWS	RWST		T/A		JC	% CJP		Beets/ 100'
6	Nov 1	\$2,005	\$43	b	12030	ab	261	а	45.7	а	17.5	а	96.0	b	269.4
2	Sept 1	\$1,970	\$53	ab	7618	е	209	d	35.8	С	14.7	d	94.5	d	273.9
7	Nov 15	\$1,901	\$43	b	12313	а	269	а	45.6	а	17.9	а	96.2	ab	258.6
5	Oct 15	\$1,846	\$42	b	11351	b	254	ab	44.1	а	17.0	ab	96.4	а	267.6
3	Sept 15	\$1,842	\$49	b	8489	d	231	С	36.3	С	15.9	С	94.6	d	272.3
4	Oct 1	\$1,829	\$45	b	9735	С	241	bc	40.2	b	16.5	bc	95.3	С	265.8
1	Aug 15	\$1,770	\$65	а	5138	f	201	d	24.1	d	14.2	d	93.7	е	269.1
Aver	age	\$1,880.4	\$48.	5	9524.	8	237.	9	38.8	2	16.2	25	95.2	23	268.11
LSD	5%	n.s.	13.4	4	788.7	7	16.2	2	2.46	6	0.9	4	0.30		n.s.
C\/ 0	/_	18.3	18 5		5.6		4.6		42		3.0)	0.2	,	5.0

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Trials in 2018 experienced very dry conditions in July and August, followed by ample rainfall in September.

Yield and sugar content increased significantly until the October 15 harvest date.

Net \$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a trial average RWST.

Effect of Havest Date on Sugarbeet Yield, Quality and Grower Income

Blumfield West, Richville, MI - 2018

(Page 2 of 3)

Trial Quality: Very Good

Variety: C-675 Planted: April 26

Harvested: See trts.

Plots: 6 rows X 38 ft, 5 reps Row Spacing: 22 inch

Soil Info: Clay Loam

% OM: 2.9 pH: 7.1 CEC: 16.4

P: above opt K: above opt

Added N: 135 lbs

Mn: high B: med

Prev Crop: Rve

Rhizoc Level: Low

Cerc Control: Very Good

Problems: None

Seeding Rate: 4.5 inches

No.	Harvest Date	Net \$/A	\$/T	RWSA	RWST	T/A	% SUC	% CJP	Beets /100ft	GDD*	Rain Inch**
2	Sept 1	\$2,233 a	\$59 b	8288 c	217 e	38.1 b	15.2 d	94.2 cd	265.0	35	19.4
3	Sept 15	\$1,958 b	\$53 c	8804 bc	238 d	37.0 b	16.4 c	94.6 c	274.4	33	20.2
5	Oct 15	\$1,900 b	\$43 e	11872 a	270 b	44.0 a	17.7 b	96.6 a	245.4	23	22.9
6	Nov 1	\$1,860 b	\$40 f	12626 a	274 ab	46.1 a	18.2 ab	96.0 ab	269.8	9	24.0
7	Nov 8	\$1,859 b	\$42 ef	12573 a	285 a	44.1 a	18.7 a	96.4 a	240.5	N/A	24.6
4	Oct 1	\$1,803 b	\$47 d	9529 b	250 c	38.3 b	16.8 c	95.4 b	236.0	24	22.9
1	Aug 15	\$1,584 c	\$70 a	4440 d	195 f	22.8 c	13.8 e	93.9 d	262.8	38	12.7
Ave	erage	\$1,885.3	\$50.6	9733.2	247.1	38.62	16.68	95.28	256.26	27.0	21.0
LSI	O 5%	177.4	2.7	903.3	11.3	3.24	0.65	0.58	n.s.		
CV	%	7.2	4.1	7.1	3.5	6.4	3.0	0.5	9.0		

^{*}GDD (Growing Degree Days): an average daily amount for the 2 weeks prior to that harvest date.

Comments: Very dry July and August conditions, followed by rain in September contributed to significant increases in yield and sugar content through late October.

Net \$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a trial average RWST.

Bold: Results are not statistically different from top-ranking treatment in each column.

Shaffner Brothers, Freeland, MI - 2018

Soil Info: Loam Trial Quality: Good Rhizoc Level: Low Variety: C-675 % OM: 2.5 pH: 7.5 CEC: 16.9 Cerc Control: Good Planted: May 8 P: above opt K: above opt Problems: None

Harvested: See trts. Mn: high B: med

Plots: 6 rows X 38 ft, 5 reps Added N: 135 lbs Seeding Rate: 4.5 inches

Row Spacing: 22 inch Prev Crop: Corn

No.	Harvest Date	Net \$/A	\$/T	RWSA	RWST	T/A	% SUC	% CJP	Beets /100ft	GDD*	Rain Inch**
1	Aug 15	\$3,338	\$85 a	9662 d	246 b	39.2 c	16.9 b	94.1 c	320.7	38	7.6
6	Nov 1	\$2,936	\$50 bcd	15630 a	268 a	58.1 a	18.0 a	96.1 a	293.7	8	16.3
2	Sept 1	\$2,699	\$61 b	10285 d	231 c	44.5 c	16.0 c	95.1 b	288.6	34	12.2
3	Sept 15	\$2,507	\$54 bc	11583 cd	248 b	46.4 bc	16.9 b	94.8 b	295.2	32	12.7
4	Oct 1	\$2,379	\$45 cd	12969 bc	246 b	52.9 ab	16.8 b	95.3 b	317.8	23	14.3
5	Oct 15	\$2,301	\$41 cd	14820 ab	263 a	56.1 a	17.6 a	96.6 a	304.8	22	15.3
7	Nov 8	\$2,236	\$39 d	15618 a	273 a	57.0 a	18.1 a	96.4 a	304.4	N/A	17.1
Ave	erage	\$2,628.0	\$53.5	12938.3	253.5	50.60	17.18	95.48	303.60	26.2	13.6
LSI	O 5%	n.s.	12.9	2013.3	11.9	6.92	0.64	0.70	n.s.		
CV	%	29.9	20.5	13.2	4.0	11.6	3.2	0.6	9.3		

^{*}GDD (Growing Degree Days): an average daily amount for the 2 weeks prior to that harvest date.

Comments: This trial was not as dry as others early in the season. Yields increased through early October, and sugar content increased through mid October. High stands and adequate rains promoted very high yields at all harvest dates.

Net \$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a trial average RWST.

^{**}Rain Inch: Actual rainfall amount including 2 weeks prior to the planting date.

^{**}Rain Inch: Actual rainfall amount including 2 weeks prior to the planting date.

Effect of Harvest Date on Sugarbeet Yield, Quality and Grower Income

Sylvester, Quanicassee, MI - 2018

(Page 3 of 3)

Trial Quality: Very Good

Variety: C-675
Planted: April 27
Harvested: See trts.

Plots: 6 rows X 38 ft, 5 reps **Row Spacing:** 22 inches

Soil Info: Clay Loam

% OM: 3.4 **pH:** 7.3 **CEC:** 21.1 **P:** above opt **K:** above opt

Mn: high B: med

Added N: 185 lbs Prev Crop: Corn Rhizoc Level: Low Cerc Control: Very Good

Problems: None

Seeding Rate: 4.5 inches

No.	Harvest Date	Net \$/A	\$/Ton	RWSA	RWST	T/A	% SUC	% CJP	Beets/ 100ft	GDD*	Rain Inch**
2	Sept 1	\$2,228 a	\$60 b	7748 d	209 с	37.0 c	14.7 c	94.3 d	301.6	36	21.3
4	Oct 1	\$2,081 ab	\$49 c	10299 b	243 a	42.3 b	16.7 a	95.2 bc	227.3	24	23.9
3	Sept 15	\$2,050 bo	\$54 c	8651 c	227 b	38.2 c	15.7 b	94.8 cd	295.2	33	22.1
5	Oct 15	\$2,004 bc	d \$44 d	11735 a	258 a	45.5 a	17.2 a	96.2 a	280.9	23	25.4
6	Nov 1	\$1,918 cd	\$41 d	12214 a	259 a	47.1 a	17.4 a	95.7 ab	286.6	9	26.4
1	Aug 15	\$1,850 d	\$74 a	4876 e	195 c	25.1 d	13.9 c	93.5 e	278.9	39	13.9
_		\$0.004.0	Φ=0.0	0050.7	004.0	00.00	45.00	04.05	000 75		22.2
AV	rerage	\$2,021.9	\$53.6	9253.7	231.9	39.20	15.96	94.95	286.75	5	22.2
LS	SD 5%	147.0	4.9	597.1	15.4	2.05	0.88	0.58	119.04		
C\	/ %	6.1	7.6	5.4	5.6	4.4	4.6	0.5	34.9		

^{*}GDD (Growing Degree Days): an average daily amount for the 2 weeks prior to that harvest date.

Comments: This trial was dry in June and early July, but caught some timely rains later in the season. Yield and sugar content increased through Mid October. Late rains also appeared to limit increases in sugar content.

Net \$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a trial average RWST.

Bold: Results are not statistically different from top-ranking treatment in each column.

Gerstenberger, Sandusky, MI - 2018

Trial Quality: Fair

Soil Info: Loam

Rhizoc Level: Low

Variety: C-675

Soil Info: Loam

Cerc Control: Good

Planted: May 1P: above opt K: optProblems: Small gaps in standHarvested: See trts.Mn: high B: lowSeeding Rate: 4.5 inches

Plots: 6 rows X 38 ft, 4 repsAdded N: 155 lbsRow Spacing: 22 inchesPrev Crop: Soybeans

No.	Harvest Date	Net \$/	A	\$/Ton		RWS	A	RWST	Г	T/A	% SUC	% CJP	Beets/ 100ft	GDD*	Rain Inch**
7	Nov 8	\$1,464	а	\$43	а	8553	а	251 a	а	34.0 a	16.8 a	95.8 ab	213.8	N/A	14.8
6	Nov 1	\$1,305	b	\$41	а	7653	b	243 a	a	31.5 a	16.6 a	96.1 a	227.6	8	14.3
5	Oct 15	\$1,181	bc	\$38	b	6978	bc	225 b	О	31.1 ab	15.5 b	96.1 a	239.3	21	13.1
4	Oct 1	\$1,052	С	\$38	b	6144	С	224 b	b	27.4 b	15.6 b	95.1 bc	232.1	23	12.0
3	Sept 15	\$851	d	\$36	b	4916	d	210 c	С	23.4 c	14.7 c	94.4 cd	224.5	32	10.7
2	Sept 1	\$720	d	\$31	d	4150	d	176 c	d	23.4 c	12.8 d	95.2 de	240.6	34	9.8
1	Aug 15	\$307	е	\$33	С	1572	е	167 c	d	9.3 d	12.3 d	93.5 e	214.0	37	6.3
Av	rerage	\$982.	8	\$37.	3	5709.	.3	213.8	3	25.74	14.89	95.05	227.40	26	11.6
LS	SD 5%	146.0)	1.8		856.8	3	9.7		3.79	0.52	0.76	29.11		
C\	/ %	11.4		3.78	3	11.5		3.5		11.3	2.7	0.6	9.8		

^{*}GDD (Growing Degree Days): an average daily amount for the 2 weeks prior to that harvest date.

Comments: Less than adequate rains throughout the growing season limited both yield and sugar content. Canopy development was slow in this trial and beets never closed the rows. Late harvest gave respectible yields, but low sugars.

Net \$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a trial average RWST.

^{**}Rain Inch: Actual rainfall amount including 2 weeks prior to the planting date.

^{**}Rain Inch: Actual rainfall amount including 2 weeks prior to the planting date.

Population TrialSylvester Farms, Quanicassee - 2018

Trial Quality: Good Soil Info: Loam Rhizoc Control: Good control: I.F. & 8

Variety: B-149N Fertilizer: Fall: P & K, PPI: 45 gal

Planted: April 29 28%; 2x2: 7 gal 10-34-0, Cerc Control: Good control: See

Harv/Samp: Nov 4 / Oct 31

3 gal Thiosul, 8 gal 28%

comments for

materials

leaf

Plot Size: 4 reps Prev Crop: Corn

Row Spacing: 24 inch Weather: Dry until mid July, then Other Pests: N/A

Seeding Rate: See treatments good weather

Treatment	Net \$/A	RWSA	RWST	T/A	% Sugar	% CJP	Population 100 Ft. 40 Days
55,000	\$1,708	10167	258	39.4	17.3	95.6	220
62,000	\$1,680	10130	262	38.7	17.5	96.0	248
LSD 5%	_	ns	ns	0.6	ns	ns	10
CV %	_	4	4	0.7	2.4	0.4	3

Comments: The goal of this trial was to start establishing the ranges of seeding rates to use with variable rate seeding. The trial was performed on a half mile long field. The north half contained some areas of lighter soil mixed with more productive loam. The south half was a more uniform loam. Prior to the trial, the grower believed the south half would out yield the north half. The harvest results were nearly identical from both ends of the field and the results of both ends were therefore combined. The 55,000 seeding rate provided a higher tonnage than the growers normal 62,000 seeding rate. Due to an unstatistical improvement for better sugar at the 62,000 population, the RWSA was nearly the same between the two rates. The average emergence in this trial was around 87% which is very high for sugarbeets. Improvements in planter and seed technology is resulting in much better emergence and this is demonstrated in the emergence counts of multiple SBA trials over the last few years. The net payment is the gross payment with a \$3 per 1000 seeds cost deducted from the 62,000 rate. Leafspot materials were as follows: 6/21 Inspire XT + EBDC, 7/5 Priaxor + EBDC, 7/15 Super Tin + EBDC, 7/25 Topguard + EBDC, 8/8 Super Tin + EBDC, 8/18 Proline + EBDC, 9/1 Super Tin + EBDC, 9/11 Badge SC, 9/21 EBDC. All with a sticker.

Net \$/A: Net payment assuming a \$3/1000 seed cost. Calculated assuming a \$40 payment and a company average RWST of 238.

Population on Sandy Soil Wishowski Farms, Auburn - 2018

Trial Quality: Good Soil Info: Sand Rhizoc Control: Good control:

Variety: SX-1243 RR Fertilizer: See fertilizer program in the Quadris 6 leaf

Planted: May 1 comments. Cerc Control: Fair control: See

Harv/Samp: Nov 2 / Oct 23 below for materials

Plot Size: 4 reps Prev Crop: Corn

Row Spacing: 30 inch Weather: Dry until mid July, then Other Pests: N/A

Seeding Rate: See treatments good weather

Treatment	Net \$/A	RWSA	RWST	T/A	% Sugar	% CJP	Population 100 Ft. 35 Days
52,400	\$830	5016	234	21.4	15.9	96.5	211
47,900	\$819	4874	234	20.8	15.9	96.2	200
56,400	\$747	4603	228	20.2	15.5	96.5	228
Average	\$799	4831	232	20.8	15.8	96.4	213
LSD 5%	_	ns	ns	ns	ns	ns	19
CV %	_	6	2	4.6	1.2	0.3	5

Comments: This trial was done to evaluate seeding rates on a sandy soil to help establish the ranges of seeding rates for variable rate seeding. The grower had a field with a larger section of sandy soil with most of the trial area having a CEC that ranged from 4.5-8.5. This would likely be similar to some of the sandy ridges that are in many fields. In addition to the light soil texture, this field also experienced a drought in the first half of the season that significantly impacted yields. There was no significant differences measured, but the 52,400 trended to be the best for both yield and quality. The average emergence in this field was about 71%, which is probably close to normal when planting into corn stalks on this light of ground. The net payment is the gross payment with a \$3/1000 seeds cost deducted from the rates higher than 47900. The fertilizer program was as follows: Fall: 150# potash & 200# pel lime. Pop-up: 2 gal of 4-13-17 + 1 pt of Mn+Zn, 2x2: 15 gal 28%, 4 gal 10-34-0, 2 gal K Flex, S.D.: 32 gal 28% + 1 qt of B & Am Thio. Leafspot materials: 1. Topguard EQ, 2. Super Tin, 3. Inspire XL, 4. Super Tin, 5. Bagde SC. All sprays included EBDC and Regard.

Net \$/A: Net payment assuming a \$3/1000 seed cost. Calculated assuming a \$40 payment and a company average RWST of 238.

PRESENTED IN PARTNERSHIP

EDUCATION

Publications, meetings seminars, web resources, clinics, reporting sessions.

Michigan Sugar Company 122 Uptown Drive, Suite 300 Bay City, MI 48708

RETURN SERVICE REQUESTED

BROUGHT TO YOU BY THESE PARTNERS:

