2017

RESEARCH RESULTS

growing the best sugarbeets

REACh/SUGARBEET ADVANCEMENT COMMITTEE LIST 2017 VOTING MEMBERSHIP

23 Voting Members

Company	Name	Terms Remaining	Expire			
	Jim Ruhlman (5 th Member)					
Michigan Sugar Company		Permar	ont			
Michigan Sugar Company	Jim Stewart	Permai	ieiit			
	CoreyGuza					
		2	2019			
Michigan Sugar Agriculturists (4 years)	Kevin Messing	4	2020			
(1,743.6)	Dexter Auernhamer	1	2018			
Michigan Sugar Company	Darrin Siemen (Secretary)	1	2018			
District Board Members	Mark Sylvester (Chairman)	1	2018			
(1 year)	Rick Leach	1	2018			
	Chris Ziehm	2	2019			
Michigan Sugar Company	Kurt Hrabal	1	2018			
At Large Growers (3 years)	Scott Roggenbuck (Treasurer)	3	2020			
	Andy Shaffner (Vice President)	2	2019			
Michigan State University,	Linda Hanson	3	2020			
University of Guelph, and USDA		1	2018			
(3 years)	Christy Sprague	2	2019			
Sugar Beet Seed Company (2 years)	Rob Gerstenberger	2	2019			
Agri-Business Retail (2 years)	Jacob Hecht	2	2019			
Agri-Business Manufacturing (2 years)	David Reif	1	2018			
Michigan Sugar Company	Jeff Gulick	1	2018			
Board of Directors (1 year)	Kent Houghtaling	1	2018			
SBA Director		Permar	nent			

Ex-Officio Members

Company	Name
Chairman of Board of Directors - MSC	Rick Gerstenberger
CEO of Michigan Sugar Company	Mark Flegenheimer

MISSION STATEMENT:

The mission of the *Michigan Sugarbeet Research Education Advisory Council* is to be the central trusted source of agronomic information for the sugarbeet industry.

The council will provide direction for the Michigan-Ontario sugarbeet researchers and assemble and distribute research/agronomy information.

Cooperative educational efforts will be conducted with the goal of improving productivity and profitability for all stakeholders.

AgBioResearch

2017 Research Results

Table of Contents

Rhizoctonia		
Compare Quadris to Generic Azoxystrobin Formulations		
Breckenridge Location		3-4
Pigeon Location		5-6
Evaluate Registered and Experimental Fungicides		7-8
Control of Rhizoctonia with Quadris IF and 6-8 Leaf	MSC	9
Cercospora		
Evaluate Fungicide Application Timings (BEETcast)	MSC	10-13
Evaluate Fungicides with and w/o EBDC Tank Mix		
Elkton Location		14-17
Pigeon Location	MSC	18-21
Evaluate Protectant Fungicides		
Elkton Location		22-24
Pigeon Location	MSC	25-27
Evaluate Sticker/Spreaders added to Fungicides		
Average of 2 Years		28
Pigeon Location 1		29-30
Pigeon Location 2		31-32
Evaluate Chlorothalonil for Control of Cercospora	MSC	33-34
Control of Cercospora Utilizing Fungicides Approved		
in Canada		35-36
Control of Cercospora using Copper and Tank Mix Products	MSC	37
Evaluate Sodium, Potassium, and Ammonium Bicarbonates		
for Cercospora Control	MSC	38
Effect of Chemosensitization Agent (Octyl Gallate)		
on Fungicide Efficacy	MSC	39-40
Control of Alternaria and Cercospora with Registered		
and Experimental Fungicides		41-44
Influence of Water Volume on Effectiveness of Fungicides	MSC	45
Control of Cercospora with Fungicides using Six Different		
Spray Tips		46
Evaluate Copper + Roundup Tank Mixes		47
Control of Cercospora with Eminent VP and Badge SC		48
Control of Cercospora with KPhite Systemic Fungicide		49
Evaluate Regalia for Control of Cercospora	MSC	50
Strategies for Cercospora leaf spot: Cultivar and Fungicide F	Program	
Cedar Springs Location	U of G	51
Ridgetown Location	U of G	52-53
In-vitro fungicide sensitivity of Cercospora beticola		
isolates 2016-17	MSU	54-55
In-vitro fungicide sensitivity distributions of Alternaria spp.		
Isolates 2016	MSU	56-57
Sugarbeet Seed Treatments		
Evaluate Seed Treatments for Control of Rhizoctonia Root R	Rot	
Average of 3 Locations		58-61
Breckenridge Location		62-63
Blumfield Location		64-65
Pigeon Location		66-67
Systiva Seed Treatment (Schindler Farms)		68
Systiva Seed Treatment (Gorinder Farms)		69
Cybuva occu meaunoni (mabari anno)		09

RESEARCH SPECIALISTS:

MICHIGAN SUGAR COMPANY
Corey Guza, PhD, Director of Agronomy
Cell989.415.3419
Emailcorey.guza@michigansugar.com
Jim Stewart, Director of Research
Cell989.225.6720
Emailjames.stewart@michigansugar.com
Dennis Bischer, Agronomist
Cell989.551.4416
Emaildennis.bischer@michigansugar.com
Brian Groulx, Research Assistant
Cell
Emailbrian.groulx@michigansugar.com

MICHIGAN STATE UNIVERSITY

Tom Wenzel, Research Technician

Cell	989.737.9447
Emailwe	enzelth@msu.edu

CORPORATE AGRICULTURAL OFFICE

122 UpTown Dr. Suite 300 Bay City, MI 48708 Telephone (989) 686-0161 - Fax (989) 671-3714

2017 Research Results

Table of Contents

Fertilizer, Foliar Feed, and Soil Additives	
Effect of Nitrogen Rates vs. Harvest DatesMSC	70-74
Early Harvest Sugarbeet Nitrogen ResponseMSU	75
Sugarbeet Nitrogen Response Following WheatMSU	76
Modern vs. Conventional Sugarbeet Nitrogen	
Application StrategiesMSU	77
Raindrop Nozzles as a Sugarbeet N Application StrategyMSU	78-79
Nitrogen and Sulfur Combination Products in SugarbeetsMSU	80
Liquid Carbon-Based Fertilizers Applied In-Furrow	
and 2x2 in SugarbeetMSU	81
Sugarbeet Response to Phosphorus FertilizerMSU	
Nitrogen Rate (Laracha Farms)SBA	83
Nitrogen Rate (Schindler Farms)SBA	
Nitrogen Rate (Spartan Acres)SBA	85
Foliar Fertilizer & LX7 (Laracha Farms)SBA	. 86
Foliar Fertilizer (SBA-SVREC)SBA	87
Fertiactyl® GZ Biostimulant (Meylan Farms)SBA	
Stimulate™ Biostimulant (Reif Farms)SBA	
Preliminary 2017 Report: Response of 8 Varieties	
to Nitrogen FertilizerU of G	90
Weed Control	
Evaluation of various ethofumesate rates applied postemergence	
in sugarbeetMSU	91
Effect of simulated tank-contamination with dicamba	91
on sugarbeetMSU	92
Effect of simulated tank-contamination with 2,4-D	92
on sugarbeetMSU	93
Herbicide-resistant waterhemp control in sugarbeetMSU	
· · · · · · · · · · · · · · · · · · ·	94
Date of Harvest	
Effect of Harvest Date on Sugarbeet Yield, Quality, and Grower Incompared to the Compared Compared to the Compared Compa	
Average of 8 yearsMSC	
Average of 3 locations and Blumfield LocationMSC	
Freeland and Akron LocationMSC	97
Population	
Population Trial – 22 Inch Rows (Gardner Farms)SBA	. 98
Other Research	
Determine Number of Days and Growing Degree	00 404
Days (GDD) for Row Closure	
Sugar beet activities of the USDA-ARS East Lansing USDA-ARS	105-106

Compare Quadris to Generic Azoxystrobin Formulations for Control of Rhizoctonia* Root Rot

Crumbaugh, Breckenridge, MI - 2017

(Page 1 of 2)

Trial Quality: Good Variety: SX-RR1245N Planted: May 15 Harvested: Sep 13

Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Clay Loam % OM: 3.0 pH: 7.1 CEC: 12.7

Above Opt: P Opt: K High: Mn Med: B Added N: 140 lbs

Prev Crop: Soybeans

Rhizoc Level: High Cerc Control: Good

Problems: Extended flooding Seeding Rate: 4.5 inches

Rainfall: 17.9 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa - Foliar, 7" band

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Treatment**	Applic Timing	/100 π Net \$/A		Vigor R 0-	ating* 10	**	Sugarbeet Stand Beets / 100 ft			
		Tilling	29- <i>F</i>	Aug			21-Jul	29-	Aug	23-May	18-Aug
3	Agristar Azoxystrobin	In-Fur	15.7	С	\$880	а	7.9	8.3	а	178	162
5	AZteroid FC	In-Fur	17.0	bc	\$835	а	7.8	8.3	а	183	165
1	Quadris	In-Fur	18.0	bc	\$838	а	7.8	8.2	ab	179	161
6	Quadris	8 If	20.6	bc	\$792	а	7.6	8.0	abc	187	167
2	Azoxy 2SC	In-Fur	21.3	bc	\$819	а	7.8	8.1	abc	179	158
10	AZteroid FC	8 If	22.1	bc	\$727	а	7.3	8.0	abc	191	169
4	Equation SC	In-Fur	24.1	bc	\$814	а	7.8	8.0	abc	186	162
9	Equation SC	8 If	27.4	bc	\$722	а	7.5	7.9	bc	195	167
8	Agristar Azoxystrobin	8 If	28.4	bc	\$758	а	7.8	7.8	С	197	168
7	Azoxy 2SC	8 If	33.4	b	\$730	а	7.6	7.8	С	193	160
11	Untreated Check		58.2	а	\$541	b	7.3	6.4	d	210	151
Average		26	0	\$769		7.7	7	· 0	188.8	161.9	
	•			26.0			n.s.	7.9		n.s.	n.s.
-	LSD 5%		14.6		139.7			0.3			
C۷	/ %		48	.∠	15.7		8.4	3	3.0	10.4	14.0

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*} Rhizoctonia solani

^{**} Treatments: In-Fur was applied at 9 fl oz/A in a 3.5 inch band on May 15th, and 8 lf was applied at 14.25 fl oz/A in a 7 inch band on June 16th. (AZtereoid at 11.6 and 18.3 fl oz/A).

^{***} Vigor: 0 to 10 ratings, 10 is best

Compare Quadris to Generic Azoxystrobin Formulations for Control of Rhizoctonia Root Rot

Crumbaugh, Breckenridge, MI - 2017

(Page 2 of 2)

No.	Treatment	Applic Timing	Net \$/	Ά	RWS	Α	RWS	RWST			% SUC		% CJF	
3	Agristar Azoxystrobin	In-Fur	\$880	а	6486	а	303	а	21.2	а	20.4	а	95.0	а
1	Quadris	In-Fur	\$838	а	6180	а	303	а	20.3	а	20.3	а	95.1	а
5	AZteroid FC	In-Fur	\$835	а	6156	а	295	а	20.9	а	19.9	а	94.6	а
2	Azoxy 2SC	In-Fur	\$819	а	6041	а	297	а	20.3	а	19.9	а	95.0	а
4	Equation SC	In-Fur	\$814	а	5999	а	299	а	20.1	а	20.2	а	94.7	а
6	Quadris	8 If	\$792	а	5886	а	293	а	20.0	а	19.9	а	94.3	ab
8	Agristar Azoxystrobin	8 If	\$758	а	5641	а	284	а	19.7	а	19.2	а	94.8	а
7	Azoxy 2SC	8 If	\$730	а	5436	а	293	а	18.5	а	19.9	а	94.4	ab
10	AZteroid FC	8 If	\$727	а	5412	а	289	а	18.6	а	19.7	а	94.4	ab
9	Equation SC	8 If	\$722	а	5374	а	293	а	18.3	а	19.9	а	94.4	ab
11	Untreated Check		\$541	b	3939	b	258	b	15.3	b	17.9	b	93.7	b
Average		\$769	\$769		5686		291		ļ	19.7		94.6	3	
LS	D 5%		139.7		1017.3		22.3		2.7		1.2		0.7	
CV	′ %	-	15.7		15.4	1	6.6	1	11.9		5.4		0.6	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Azoxy 2SC, AZteroid FC, Agristar Azoxystrobin, and Equation SC (generic azoxystrobin formulations) were applied in-furrow at planting and at the 6 to 8 leaf stage for control of Rhizoctonia root rot and compared to Quadris SC. This was a non-inoculated small plot replicated trial and the disease level was high. The untreated check had the highest stand count early in the season but the differences were not significant. Late in the season, the untreated check had the lowest live beet count, and all azoxystrobin formulations had significantly higher counts. In general in-furrow applications performed better than foliar (6-8 lf) applications. An average of 19 dead beets were found in the in-furrow treatments compared to an average of 26 dead beets per 100 ft of row in the foliar applications. No significant differences existed between the different formulations. The untreated plots had 58 dead beets per 100 feet of row and sustained a 5.5 ton per acre yield loss and also lost 2.1 points of sugar, compared to the average of the treatments.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Compare Quadris to Generic Azoxystrobin Formulations for Control of Rhizoctonia* Root Rot

Mennonite Church, Pigeon, MI - 2017

(Page 1 of 2)

Trial Quality: Fair - Good Variety: SX-RR1245N Planted: April 29 Harvested: Oct 12

Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Loam

% OM: 2.0 pH: 6.9 CEC: 10.3 Above Opt: P Below Opt: K

High: Mn Low: B Added N: 140 lbs Prev Crop: Wheat

Rhizoc Level: see trts. Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches

Rainfall: 16.4 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa- IF, Foliar 7" band

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Treatment**	Applic	Dea B/10		Net \$/A		Rating** -10	Sugarbeet Stand Beets / 100 ft			
		Timing	21-A	ug		17-Jul	21-Aug		24-May	18- <i>A</i>	Aug
3	Agristar Azoxystrobin	In-fur	1.8	С	\$1,055	7.0	8.3 a		191	188	abc
1	Quadris	In-fur	1.9	С	\$1,153	7.9	8.3	а	196	193	abc
10	AZteroid FC	8 If	2.8	С	\$1,111	8.4	8.3	а	194	187	abc
4	Equation SC	In-fur	3.3	С	\$1,112	7.8	8.1	а	197	190	abc
8	Agristar Azoxystrobin	8 If	3.5 c		\$1,079	8.1	8.1 8.0		203	197	ab
5	AZteroid FC	In-fur	4.5	С	\$1,058	7.6	8.1	а	195	189	abc
7	Azoxy 2SC	8 If	5.5	bc	\$1,070	7.8	8.1 a		190	181	bcd
6	Quadris	8 If	6.3	bc	\$1,038	7.6	8.4	а	210	198	а
2	Azoxy 2SC	In-fur	9.5	b	\$1,052	7.9	8.1 a		186	180	cd
9	Equation SC	8 If	9.8	b	\$1,050	7.9	8.3	а	192	181	bcd
11	Untreated Check		20.5	а	\$843	7.4	6.8	b	192	167	d
		6.0	,	£4.050	7.0	0	1	105	100		
I	erage D 5%		6.3		\$1,056	7.8			195	186 14.6	
	/ %		4.4 48.01		n.s. 10.4	12.2	n.s. 0.4 12.2 3.4		n.s. 7.5		
CV	7 70		40.0	וע	10.4	12.2	٥.	4	7.5	ິວ.	4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Rhizoctonia solani

^{**} Treatments: In-Furrow was applied at 9 fl oz/A in a 3.5 inch band on April 29th, and 8 lf was applied at 14.25 fl oz/A in a 7 inch band on May 30th.

^{***} Vigor: 0 to 10 ratings, 10 is best.

Compare Quadris to Generic Azoxystrobin Formulations for Control of Rhizoctonia Root Rot

Mennonite Church, Pigeon, MI - 2017

(Page 2 of 2)

No.	Treatment	Applic Timing	Net \$/A	RWSA	RWST	T/A	% SUC	% CJP	
3	Agristar Azoxystrobin	In-fur	\$1,055	7616 a	284 a	26.9	18.9 a	95.7	
1	Quadris	In-fur	\$1,153	8313 a	293 a	28.4	19.4 a	95.8	
10	AZteroid FC	8 If	\$1,111	8054 a	293 a	27.4	19.3 a	96.1	
4	Equation SC	In-fur	\$1,112	8025 a	292 a	27.5	19.2 a	96.0	
8	Agristar Azoxystrobin	8 If	\$1,079	7829 a	295 a	26.5	19.5 a	95.9	
5	AZteroid FC	In-fur	\$1,058	7636 a	293 a	26.1	19.3 a	96.0	
7	Azoxy 2SC	8 If	\$1,070	7763 a	296 a	26.2	19.5 a	96.0	
6	Quadris	8 If	\$1,038	7534 a	288 a	26.2	19.0 a	95.9	
2	Azoxy 2SC	In-fur	\$1,052	7593 a	282 a	27.0	18.8 a	95.5	
9	Equation SC	8 If	\$1,050	7622 a	286 a	26.6	19.0 a	95.7	
11	Untreated Check		\$843	6023 b	264 b	22.8	17.7 b	95.3	
			¢1.056	7637	288	26.5	19.1	95.8	
Average		\$1,056	7037	200	20.5	19.1	95.6		
LSD 5%		n.s.	1134.4	15.4	15.4 n.s.		n.s.		
CV	/ %		10.4	10.29	3.72	3.72 9.8		0.4	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Azoxy 2SC, AZteroid FC, Agristar Azoxystrobin, and Equation SC (generic azoxystrobin formulations) were applied In-Furrow at planting and at the 6 to 8 leaf stage for control of Rhizoctonia root rot and compared to Quadris SC. This was a non-inoculated small plot replicated trial and disease level was moderate (20 dead beets / 100 ft in the untreated). There were no differences in the initial stand counts but all of the treatments had better stands than the untreated check late in the season. In general In-Furrow applications performed better than foliar (6 to 8 lf) applications. An average of 4 dead beets were found in the In-Furrow treatments compared to an average of 6 dead beets per 100 ft of row in the foliar applications. The untreated plots had 21 dead beets per 100 feet of row and sustained a 3 ton per acre yield loss and also lost 1.5 points of sugar, compared to the average of the treatments. Overall, the azoxystrobin formulations performed similarly.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Registered and Experimental Fungicides Applied In-Furrow at Planting and at the 6-8 Leaf Stage for Control of Rhizoctonia Root Rot in Sugarbeets

Crumbaugh, Breckenridge, MI - 2017

(Page 1 of 2)

Trial Quality: Good Variety: SX-RR1245N Planted: May 19 Harvested: Sept 15

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches Soil Info: Sandy Clay Loam %OM: 3.0 pH:7.1 CEC: 12.7 Above Opt: P Opt: K High: Mn Med: B Added N: 140 lbs

Prev Crop: Soybeans

Rhizoc Level: See trts.
Cerc Control: Good
Problems: Flooding
Seeding Rate: 4.5 inches

Rainfall: 17.9 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa - Foliar, 7" Band

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Treatment	Rate/A fl oz	Appl	Net :	\$/A	RW	SA	RWST	T/	Ά	% SUC	% CJP
10	Quadris	10	IF T-Band	\$764	а	6109	а	309	19.7	а	20.7	95.1
	Quadris	14.25	8 If									
	Preference	0.125%	4 If									
7	Proline	5.7	IF T-Band	\$746	а	5856	ab	309	19.0	ab	20.7	94.8
3	Quadris	14.25	IF T-Band	\$739	a	5807	abc	307	18.9	abc	20.7	94.8
20	Quadris + Preference	14.25 + .125%	8 lf	\$722	ab	5675	a-d	308	18.2	a-d	20.7	94.9
6	Moncut	35.3	IF T-Band	\$708	abc	5649	a-d	306	18.4	a-d	20.6	94.8
19	Quadris	14.25	8 lf	\$698	abc	5495	a-d	302	18.1	а-е	20.4	94.7
17	Quadris	14.25	4 If	\$691	abc	5437	a-d	302	18.0	а-е	20.2	95.2
16	Proline Proline + Preference	5.7 5.7 + .125%	IF T-Band 8 If	\$689	abc	5578	a-d	305	18.3	a-d	20.6	94.7
26	Moncut + Preference	23.5 + .125%	8 If	\$687	abc	5406	a-d	304	17.7	а-е	20.3	95.2
4	Moncut	17.7	IF T-Band	\$685	abc	5353	a-d	307	17.4	b-e	20.7	94.7
8	Headline	9.2	IF T-Band	\$678	abc	5320	a-d	306	17.3	b-e	20.5	95.2
23	Priaxor + Preference	8 + .125%	8 If	\$676	abc	5337	a-d	300	17.8	а-е	20.1	95.0
22	Quadris + Preference	14.25 + .125%	12 If	\$671	abc	5287	a-d	304	17.4	b-e	20.2	95.5
2	Quadris	10	IF T-Band	\$669	abc	5212	a-d	305	17.0	b-e	20.4	95.1
27	Moncut	35.3	8 If	\$667	abc	5296	a-d	307	17.3	b-e	20.6	94.9
12	Moncut	35.3	IF T-Band	\$664	abc	5425	a-d	301	18.1	а-е	20.2	94.9
	Moncut + Preference	35.3 + .125%	8 If									
1	Quadris	7.1	IF T-Band	\$655	abc	5067	a-d	300	16.9	b-e	20.1	95.0
24	Proline + Preference	5.7 + .125%	8 If	\$643	abc	5074	a-d	304	16.7	b-e	20.5	94.7
18	Quadris + Preference	14.25 + .125%	4 If	\$642	abc	5071	a-d	295	17.0	b-e	20.1	94.4
5	Moncut	23.5	IF T-Band	\$638	abc	5083	a-d	307	16.4	de	20.6	94.9
21	Quadris	14.25	12 If	\$629	abc	4971	bcd	299	16.6	cde	20.0	95.1
11	Moncut	23.5	IF T-Band	\$629	abc	5080	a-d	305	16.7	b-e	20.5	94.8
	Moncut + Preference	23.5 + .125%	8 If									
28	Moncut + Preference	35.3 + 125%	8 If	\$625	abc	4974	bcd	303	16.4	de	20.5	94.6
14	Priaxor Priaxor + Preference	8 8 + .125%	IF T-Band 8 If	\$597	bc	4919	bcd	297	16.6	cde	20.1	94.7
9	Priaxor	6.7	IF T-Band	\$590	bc	4683	d	291	16.1	de	19.6	94.8
25	Moncut	23.5	8 If	\$590	bc	4671	d	296	15.8	е	20.2	94.2
15	Headline	9.2	IF T-Band	\$587	bc	4764	cd	294	16.2	de	20.0	94.4
	Headline + Preference	9.2 + 125%	8 If	·								
13	Priaxor	6.7	IF T-Band	\$576	С	4716	d	289	16.3	de	19.7	94.3
		6.7 + .125%	4 If									
29					d	3413	е	262	13.0	f	18.2	93.6
Αv	Average				\$655 5196		301	17.2		20.3	94.8	
	LSD 5%				.3	868		n.s.	1.		n.s.	n.s.
	/ %			12.		11.		6.8	7.		5.6	0.6
	*/ A : Assume a \$40 heet	naumant and tric	01/0808014							<u> </u>	0.0	0.0

Net \$/A: Assume a \$40 beet payment and trial average with fungicide costs subtracted off.

Evaluate Registered and Experimental Fungicides Applied In-Furrow at Planting and at the 6-8 Leaf Stage for Control of Rhizoctonia Root Rot in Sugarbeets

Crumbaugh, Breckenridge, MI - 2017

(Page 2 of 2)

No.	Treatment	Rate/A	Appl	Net	\$/A		and 100'				ad 100'				jor* 10	
		fl oz					24-	Aua	5-8			lua	25-		24-	Aua
10	Quadris	10	IF T-Band	\$764		202		a-d		k	5	h	8.1	а	8.3	а
	Quadris	14.25	8 If													
	Preference	0.125%	8 If													
7	Proline	5.7	IF T-Band	\$746	а	215	187	a-d	20	ijk	11	qh	8.1	а	8.2	ab
3	Quadris	10	IF T-Band	\$739	а	218	188	a-d	23	g-k	13	fgh	7.6	a-d	7.8	a-d
20	Quadris + Preference	14.25 + .125%	8 l f	\$722	ab	229	182	a-d	31	c-j	21	d-g	7.5	а-е	7.6	а-е
6	Moncut	35.3	IF T-Band	\$708	abc	211	188	a-d	17	jk	12	gh	7.9	ab	8.0	abc
19	Quadris	14.25	8 I f	\$698	abc	223	194	ab	21	h-k	15	e-h	7.5	а-е	7.6	а-е
17	Quadris	14.25	4 If	\$691	abc	223	183	a-d	31	d-j	21	d-g	8.0	ab	7.8	a-d
16	Proline	5.7	IF T-Band	\$689	abc	208	169	а-е	31	c-j	18	d-g	7.8	abc	7.9	a-d
	Proline + Preference		8 If			2.10		_								
26	Moncut + Preference		8 lf	\$687		219	181	a-d	22	h-k	20	d-g	7.5	а-е	7.8	a-d
4	Moncut	17.7	IF T-Band	\$685		217	173	а-е	40	b-f	20	d-g	7.8	abc		a-d
8	Headline	9.2	IF T-Band			209	169	а-е	37	c-h	26	b-e	7.5	а-е	7.5	a-f
23			8 lf	\$676		203	172	а-е	25	f-j	20	d-g	7.8	abc		a-d
22	Quadris + Preference		12 lf	\$671		230	193	abc	28	d-j	18	d-g	8.1	ab	7.9	a-d
2	Quadris	10	IF T-Band	\$669		218	180	a-d	32	c-j	24	def		b-f	7.1	c-g
27	Moncut	35.3	8 lf	\$667		225	182	a-d	39	b-g	21	d-g	7.5	а-е	7.6	а-е
12	Moncut		IF T-Band	\$664	abc	206	169	а-е	31	c-j	19	d-g	7.5	а-е	7.6	а-е
	Moncut + Preference		8 If	0077		007	4=0		4.4		00		0.4		0.5	
1	Quadris	7.1	IF T-Band	+		207	159	cde	41	b-f	30	bcd	6.4	ef	6.5	gh
24	Proline + Preference	5.7 + .125%	8 lf	\$643		205	165	а-е	32	c-j	25	c-f	7.5	a-e		а-е
18	Quadris + Preference			\$642		224	170	a-e	47	bc	29	bcd		b-f	7.0	d-g
5	Moncut	23.5	IF T-Band 12 If			205	160	b-e	41	b-e	23	def		а-е	7.6	а-е
21	Quadris	14.25 23.5	ı∠ıı IF T-Band	\$629		227	199	а-е	26	e-j	15	e-h	7.4	а-е	7.6	а-е
11	Moncut Moncut + Preference		8 If	\$629	abc	212	166	а	35	c-i	22	d - g	7.5	а-е	7.6	а-е
28	Moncut + Preference		8 If	\$625	ahc	224	182	2.4	33	c i	25	cde	7.0	a-f	7.3	h a
14	Priaxor	8	IF T-Band		bc	220	175	a-d a-d	42	c-j b-e	24	def	7.3	а-ı а-е	7.4	b-g a-q
14	Priaxor + Preference	8 + 125%	8 If	ψυση		220	173	a-u	72	D <u>-</u> E	24	uei	7.5	a -c	7.4	a-y
9	Priaxor	6.7	IF T-Band	\$590	bc	207	157	cde	47	bc	28	bcd	6.6	c-f	6.8	efa
25	Moncut	23.5	8 If	\$590	bc	207	162	b-e	39	b-q	36	b	6.6	c-f	6.7	efg
15	Headline	9.2	IF T-Band	\$587	bc	218	170	a-e	43	bcd		b-e	7.3	а-е	7.3	a-g
	Headline + Preference		8 If													- 9
13	Priaxor	6.7	IF T-Band	\$576	С	215	154	de	54	b	35	bc	6.5	def	6.6	fg
	Priaxor + Preference	6.7 + .125%	4 If	\$449												
29	29 Untreated Check				d	221	139	е	73	а	49	а	6.0	f	5.8	h
Δν	Average				55	215.4	174	12	3/	1	22) Д П	7	1	7	1
	LSD 5%			Ψ0. 114		n.s.	28		34.1 22.4 13.2 9.4			7.4 1.0		7.4 0.8		
	/ %			12.		7.0	11			'.6	_	9 9	9	_		.4
	, ,,			۱۷	. т	1.0	- 1	. 1		.0	_ ∠ č	,.U	9		- 1	. Т

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: The *Rhizoctonia solani* (root rot) level was very high in this trial. Quadris applied in-furrow followed by an 8 leaf application gave the best results, followed by Quadris applied in-furrow, then by Quadris at the 8 leaf stage, followed by the 12 leaf stage then the 4 leaf stage. Proline and Moncut applied in-furrow also provided good control. Headline and Priaxor were somewhat less effective.

Net \$/A: Assume a \$40 beet payment and trial average with fungicide costs subtracted off.

^{*} Vigor: 0 to 10 rating, 10 is best. *Sprayed: 4 If - June 12th, 8 If - June 27th, 12 If - July 7th

Plots: 6 rows X 38 ft.

Control of Rhizoctonia Root in Sugarbeets with Quadris Applied In-Furrow at Planting and at the 6-8 Leaf Stage Crumbaugh, Breckenridge, MI - 2017

Trial Quality: Good
Variety: SX 1245N

Planted: May 19

Harvested: Sept 15

Soil Info: Sandy Clay Loam
%OM: 3.0 pH:7.1 CEC
Above Opt: P Opt: K
High: Mn Med: B

Soil Info: Sandy Clay Loam

WOM: 3.0 pH:7.1 CEC: 12.7

Above Opt: P Opt: K

High: Mn Med: B

Added N: 140 lbs

Rhizoc Level: See trts.

Cerc Control: Good

Problems: Flooding

Seeding Rate: 4.5 inches

Rainfall: 17.9 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa - Foliar, 7" Band

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Treatment	Аррі	fl oz/A	Net \$/A	RWSA	RWST	T/A	% SUC	16-Jun Beets 100 ft	31-Aug Dead B/100 ft
1	Quadris FI	IF 3.5" T-Band	10.0	\$914 a	7543 a	340 a	22.2 a	22.4 a	241 b	13 b
2	Quadris FI	6-8 If 7" Band	14.25	\$861 a	7149 a	331 ab	21.6 a	21.8 ab	255 a	19 b
3	Untreated			\$616 b	5004 b	303 b	16.5 b	20.3 b	252 a	43 a
A۱	/erage			\$797	6565	325	20.1	21.5	249.1	24.9
LS	SD 5%			92.7	752.8	29.4	1.5	1.7	8.9	10.2
C,	/ %			6.7	6.6	5.2	4.2	4.5	2.1	23.6

Means followed by same letter are not significantly different (P=.05, Duncan's New MRT)

Comments: Quadris was applied in-furrow at planting in a 3.5 inch t-band and at the 6-8 leaf stage in a 7 inch band. The *Rhizoctonia solani* (root rot) level was high. The in-furrow treatments gave better root rot control than the 6-8 leaf treatments. The in-furrow treatments caused about 4% stand loss. Both Quadris treatments had significantly higher yield, quality and net income than the untreated check.

Net \$/A: Assume a \$40 beet payment and trial average with fungicide costs subtracted off. **Bold:** Results are not statistically different from top-ranking treatment in each column.

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora Leafspot in Sugarbeets

Answer Plot, Bach, MI - 2017

(Page 1 of 4)

Rhizoc Level: Low

Rainfall: 19.1 inches

Cerc. Control: See trts.

Problems: Alternaria LS

Seeding Rate: 4.5 inches

Trial Quality: Good

Varieties: C-RR059, B-149N, B-1399

Planted: May 9 Harvested: Oct 31

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Soil Info: Loam

% OM: 3.2 pH: 7.7 CEC: 14

Above Opt: P, K **High:** Mn Med: B Added N: 140 lbs

Previous Crop: Corn

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment	Variety	Ce % L Dam	.eaf	% L	ern .eaf iage	Net \$	/A	RWS	A	RW	ST	T	/A	% SU		CJ	
4	Bcast Aggressive***	B-1399	1.3	g	1.4	hi	\$1,561	ab	12257	ab	302	abc	40.6	bcd	19.7	bcd	96.4	ab
5	Bcast Aggressive***	C-RR059	1.5	g	2.8	efg	\$1,636	ab	12813	ab	319	а	40.3	cd	21.0	а	95.8	abc
7	ND/MN**	B-1399	1.5	g	1.8	ghi	\$1,565	ab	12028	b	301	abc	39.9	cd	19.8	bcd	96.1	ab
6	Bcast Aggressive***	B-149N	1.8	fg	1.5	hi	\$1,688	ab	13269	а	308	abc	43.1	abc	20.1	a-d	96.4	а
10	New Model*	B-1399	1.8	fg	1.5	hi	\$1,662	ab	12818	ab	303	abc	42.4	abc	19.8	bcd	96.3	ab
8	ND/MN**	C-RR059	2.5	efg	3.8	е	\$1,533	b	11791	b	302	abc	39.1	d	20.0	a-d	95.6	bc
12	New Model*	B-149N	2.9	d-g	2.5	fgh	\$1,702	а	13297	а	311	abc	42.9	abc	20.5	abc	95.8	abc
11	New Model*	C-RR059	3.4	d-g	3.0	ef	\$1,704	а	13313	а	304	abc	43.7	ab	19.9	bcd	96.2	ab
1	BEETcast	B-1399	4.4	def	1.5	hi	\$1,618	ab	12488	ab	300	abc	41.7	bcd	19.7	bcd	96.2	ab
9	ND/MN**	B-149N	4.8	de	1.3	i	\$1,616	ab	12400	ab	293	С	42.4	abc	19.3	d	96.1	ab
2	BEETcast	C-RR059	5.5	d	5.3	d	\$1,706	а	13328	а	314	ab	42.5	abc	20.7	ab	95.8	abc
3	BEETcast	B-149N	5.5	d	1.5	hi	\$1,697	а	13337	а	295	bc	45.3	а	19.6	cd	95.7	abc
13	Untreated Check	B-1399	58.0	С	6.4	С	\$1,192	С	8820	С	264	d	33.4	е	17.5	е	96.0	ab
14	Untreated Check	C-RR059	80.8	b	17.5	а	\$1,141	O	8443	O	261	d	32.4	е	17.7	е	94.9	d
15	Untreated Check	B-149N	93.8	а	7.7	b	\$1,142	С	8449	С	266	d	31.9	е	17.9	е	95.3	cd
A۱	verage		17	'.9	3.	.9	\$1,54	4	1192	23	29	96	40).1	19	.5	95	.9
LS	SD 5%	_	2.	.4	1.	.0	136.2	2	1007	.8	17	.4	2.	.9	0.	9	0.	6
C/	/ %		9.	.4	18	3.4	6.1		5.9		4.	1	4	.9	3.	4	0.	4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Comments: Leafspot disease severity (Cercospora beticola and Alternaria Alternata) has been increasing in recent years. To maintain control BEETcast recommendations need to be adjusted yearly. In this trial we evaluated the normal BEETcast recommendations, a more aggressive BEETcast program, a new model developed by Michigan Sugar with help from Dr. Linda Hanson and Daniel Bublitz and a modified, ND/MN leafspot model. With respect to disease control, the more aggressive BEETcast treatments provided the best disease control, however, the New Model and current BEETcast recommendations provided the highest dollar per acre return. Providing better disease control has value, even if the additional costs reduce the payment slightly. Less disease means better processing, better pile storage and fewer spores to infect future crops. With respect to varietal tolerance, B-1399 had less damage from leafspot but yielded less and generated less income. C-RR059 gave fairly good Cercospora control but had the worst ratings for Alternaria control. B-149N had the worst Cercospora ratings but yielded well and provided the highest income. Better varieties are coming, however, it appears that growers will need to be aggressive in their approach to leafspot control for the foreseeable future. This was a good quality trial with a favorable sugarbeet stand.

^{*}New Model: Developed by Michigan Sugar Co. and MSU (Hanson/Bublitz).

^{**}ND/MN: Red River Valley model modified by Daniel Bublitz

^{***}Bcast Aggressive: BEETcast with earlier start date and closer timings

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora Leafspot in Sugarbeets

MICHIGAN SUGAR Answer Plot, Bach, MI - 2017

(Page 2 of 4)

Trial Quality: Good Variety: B-149N, C-RR059, B-1399

Planted: May 9 Harvested: Oct 31

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Soil Info: Loam

% OM: 3.2 pH: 7.7 CEC: 14.0 Above Opt: P, K

High: Mn Med: B Added N: 140 lbs

Prev Crop: Corn

Application: JD 3520 Tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

Rhizoc Level: Low Cerc Control: See trts. Problems: Alternaria LS Seeding Rate: 4.5 inches

Rainfall: 19.1 inches

Application Timing Effect (averaged over varieties)

No.	Treatment	Net \$/A		% Altern Damage	RWSA	RWST	T/A	% SUC
4	New Model*	\$1,689 a	2.7 bc	2.3 b	13143 a	306 ab	43.0 a	20.1 ab
1	BEETcast Current Rec.	\$1,674 a	5.1 b	2.8 b	13051 a	303 ab	43.2 a	20.0 ab
2	Bcast Aggressive***	\$1,629 a	1.5 c	1.9 b	12780 a	310 a	41.3 a	20.3 a
3	ND/MN**	\$1,571 a	2.9 bc	2.3 b	12073 a	299 b	40.5 a	19.7 b
5	Untreated Check	\$1,158 b	77.5 a	10.53 a	8570 b	263 c	32.6 b	17.7 c
Ave	erage	\$1,544	17.9	4.0	11923	296	40.1	19.6
LSI	D 5%	155.6	3.5	1.5	1151.2	9.9	4.9	0.6
CV	%	11.3	21.7	43.0	10.9	3.7	13.8	3.3

Variety Effect (averaged over fungicide treatments)

No.	Treatment	Net \$/A	% Cerc Damage	% Altern Damage	RWSA	RWST	T/A	% SUC
3	B-149N	\$1,569	21.7 a	2.9 b	12150	295	41 a	19.5 ab
2	C-RR059	\$1,544	18.7 b	6.5 a	11937	300	40 b	19.9 a
1	B-1399	\$1,520	13.4 с	2.5 b	11682	294	40 b	19.3 b
Ave	erage	\$1,544	17.9	4.0	11923	296	40	19.6
	D 5%	n.s	1.1	0.5	n.s.	n.s	1.3	0.4
CV	%	6.1	9.3	18.4	5.9	4.1	4.9	3.3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}New Model: Developed by Michigan Sugar Co. and MSU (Hanson/Bublitz).

^{**}ND/MN: Red River Valley model modified by Daniel Bublitz

^{***}Bcast Aggressive: BEETcast with earlier start date and closer timings

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora Leafspot in Sugarbeets Answer Plot, Bach, MI - 2017 (Page 3 of 4)

No.	Trt	Арр	DSV	Date	Treatment
1	Current Rec	1	51	6-Jul	Inspire + Manzate + MasterLock
	B-1399	2	100	28-Jul	Super Tin + Manzate + MasterLock
		3	122	14-Aug	Proline + NIS + Manzate + MasterLock
		4	147	1-Sep	Super Tin + Badge + Masterlock
2	Current Rec	1	49	5-Jul	Inspire + Manzate + MasterLock
	C-RR059	2	84	21-Jul	Super Tin + Manzate + MasterLock
		3	109	4-Aug	Proline + NIS + Manzate + MasterLock
		4	124	16-Aug	Super Tin + Badge + MasterLock
		5	147	1-Sep	Enable + NIS + Manzate + MasterLock
3	Current Rec	1	49	5-Jul	Inspire + Manzate + MasterLock
	B-149R	2	73	15-Jul	Super Tin + Manzate + MasterLock
		3	94	25-Jul	Proline + NIS + Manzate + MasterLock
		4	115	9-Aug	Super Tin + Badge + MasterLock
		5	139	23-Aug	Enable + NIS + Manzate + MasterLock
		6	147	1-Sep	Manzate + Badge + MasterLock
4	Aggressive***	1	49	5-Jul	Inspire + Manzate + MasterLock
	B-1399	2	93	24-Jul	Super Tin + Manzate + MasterLock
		3	115	9-Aug	Proline + NIS + Manzate + MasterLock
		4	139	25-Aug	Super Tin + Badge + MasterLock
		5	147	1-Sep	Manzate + Badge + MasterLock
5	Aggressive***	1	49	5-Jul	Inspire + Manzate + MasterLock
	C-RR059	2	73	15-Jul	Super Tin + Manzate + MasterLock
		3	94	25-Jul	Proline + NIS + Manzate + MasterLock
		4	115	9-Aug	Super Tin + Badge + MasterLock
		5	139	23-Aug	Enable + NIS + Manzate + MasterLock
		6	147	1-Sep	Manzate + Badge + MasterLock
6	Aggressive***	1	36	27-Jun	Inspire + Manzate + MasterLock
	B-149R	2	60	11-Jul	Super Tin + Manzate + MasterLock
		3	84	21-Jul	Proline + NIS + Manzate + MasterLock
		4	113	7-Aug	Super Tin + Badge + MasterLock
		5	124	16-Aug	Enable + NIS + Manzate + MasterLock
		6	147	1-Sep	Manzate + Badge + MasterLock
		7	157	11-Sep	Manzate + Badge + MasterLock
7	ND/MN**	1	53	7-Jul	Inspire + Manzate + MasterLock
	B-1399	2	94	25-Jul	Super Tin + Manzate + MasterLock
		3	117	11-Aug	Proline + NIS + Manzate + MasterLock

*New Model: Developed by Michigan Sugar Co. and MSU (Hanson/Bublitz).

^{**}ND/MN: Red River Valley model modified by Daniel Bublitz

^{***}Bcast Aggressive: BEETcast with earlier start date and closer timings

Evaluate Fungicide Application Timings (BEETcast) for Control of Cercospora Leafspot in Sugarbeets Answer Plot, Bach, MI - 2017 (Page 4 of 4)

No.	Trt	Арр	DSV	Date	Treatment
8	ND/MN**	1	53	7-Jul	Inspire + Manzate + MasterLock
	C-RR059	2	94	25-Jul	Super Tin + Manzate + MasterLock
		3	117	11-Aug	Proline + NIS + Manzate + MasterLock
9	ND/MN**	1	53	7-Jul	Inspire + Manzate + MasterLock
	B-149N	2	94	25-Jul	Super Tin+ Manzate + MasterLock
		3	117	11-Aug	Proline + NIS + Manzate + MasterLock
10	New Model*	1	36	27-Jun	Manzate + MasterLock
	B-1399	2	53	7-Jul	Inspire + Manzate + MasterLock
		3	100	28-Jul	Super Tin + Manzate + MasterLock
		4	134	21-Aug	Proline + NIS + Manzate + MasterLock
		5	147	1-Sep	Manzate + Badge + MasterLock
11	New Model*	1	36	27-Jun	Manzate + MasterLock
	C-RR059	2	53	7-Jul	Inspire + Manzate + MasterLock
		3	94	25-Jul	Super Tin + Manzate + MasterLock
		4	115	9-Aug	Proline + NIS + Manzate + MasterLock
		5	134	21-Aug	Super Tin + Manzate + MasterLock
		6	147	1-Sep	Manzate + Badge + MasterLock
12	New Model*	1	36	27-Jun	Manzate + MasterLock
	B-149N	2	53	7-Jul	Inspire + Manzate + MasterLock
		3	93	24-Jul	Super Tin + Manzate + MasterLock
		4	106	3-Aug	Proline + NIS + Manzate + MasterLock
		5	139	24-Aug	Super Tin + Manzate + MasterLock
		6	147	1-Sep	Manzate + Badge + MasterLock
13	UTC				
	B-1399				
14	UTC				
	C-RR059				
15	UTC				
	B-149N				

^{*}New Model: Developed by Michigan Sugar Co. and MSU (Hanson/Bublitz).

^{**}ND/MN: Red River Valley model modified by Daniel Bublitz

^{***}Bcast Aggressive: BEETcast with earlier start date and closer timings

Evaluate Fungicides (with and w/o EBDC Tank Mix) for Control of *Cercospora beticola* (leafspot) in Sugarbeets

MICHIGAN SUGAR Herford, Elkton, MI - 2017

(Page 1 of 4)

Trial Quality: Good Variety: B-149N Planted: April 26 Harvested: Oct 9

Plots: 6 rows X 38 ft, 4 reps **Row Spacing:** 22 inches

Soil Info: Sandy Loam % OM: 3.2 pH: 7.5 CEC: 12 Above Opt: P Below Opt: K High: Mn Med: B

Added N: 140 lbs
Prev Crop: Wheat

Rhizoc Level: Low Cerc Control: See trts. Problems: Alternaria LS Seeding Rate: 4.5 inches

Rainfall: 22.2 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

	% C	erc l	Dama	ge		Net	\$ / A		R	NSA			RW	/ST	
Treatment	EBD		NO		EBD		NO		EBDC	N		EB		NO	
	Tar		Tai		Tan		Tan		Tank	Та			nk	Tai	
	Mix		Mix		Mix		Mix		Mix*	M		Mi		Mi	
Inspire XT + Enable** + NIS	0.5		2.3	i-l	\$1,150	abc	\$1,095	a-d	9612 a	8945	a-d	296	abc	284	a-f
Minerva Duo	0.5	1	2.0	jkl	\$1,107	a-d	\$1,173	ab	9088 ab	9269	ab	287	а-е	290	а-е
Inspire XT	0.8	kl	4.2	g-l	\$1,128	a-d	\$1,082	a-d	9047 ab	8448	a-f	300	а	279	b-g
Super Tin	1.0	jkl	1.5	jkl	\$1,186	ab	\$1,207	а	9178 ab	9040	abc	297	ab	286	a-f
Proline + NIS	1.0	jkl	2.0	jkl	\$1,091	a-d	\$1,137	abc	8974 a-c	8989	a-d	283	a-f	281	b-g
Enable + NIS	1.3	jkl	6.9	e-i	\$1,072	a-f	\$1,072	a-f	8747 a-c	8472	a-f	289	а-е	279	b-g
Echo	1.4	jkl	2.0	jkl	\$1,178	ab	\$1,193	ab	9077 ab	8900	a-d	282	a-f	285	a-f
Inspire XT + Potassium Biocarbonate	2.0	jkl	5.6	f-j	\$1,105	a-d	\$1,031	a-g	8974 a-c	8177	b-f	290	а-е	276	d-g
Tilt	2.5	h-l	10.7	de	\$1,009	b-g	\$1,019	a-g	7912 c-f	7702	def	279	b-g	275	d-g
Priaxor	2.5	h-l	9.7	def	\$941	d-g	\$891	efg	7900 c-f	7341	efg	273	efg	272	efg
Topsin	2.6	h-l	4.8	g-l	\$1,013	b-g	\$1,105	a-d	7967 b-1	8329	a-f	276	d-g	277	c-g
Eminent	3.4	g-l	12.2	d	\$1,075	а-е	\$971	c-g	8726 a-c	7706	def	280	b-g	269	fg
Topguard	4.5	g-l	5.5	f-k	\$1,010	b-g	\$1,099	a-d	8269 b-1	8594	а-е	293	a-d	281	b-g
Minerva	6.9	e-i	7.0	e-h	\$1,031	a-g	\$1,057	a-f	8417 a-1	8303	a-f	272	efg	283	a-f
Headline	7.9	d-g	41.8	С	\$1,008	b-g	\$886	fg	8386 a-1	7262	fg	278	b-g	263	g
Untreated	78.8	b	93.8	а	\$853	g	\$893	efg	6229 g	6229	g	235	h	235	h

	Average	7.3	13.25	\$1,060	\$1,057	8531	8231	282	276
	LSD 5%	4.	.0	15	5.7	108	85.7	15	5.4
L	CV %	27		10	0.4	9).1	J	.9

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: A - June 28th, B - July 17th, C - Aug 1st, D - Aug 18th, E - Aug 28th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**} Fungicide Rates: Recommended rates except for Inspire XT + Enable, Enable is a half rate (4 fl oz/A)

^{*} Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/A), NIS: Preference

Evaluate Fungicides (with and w/o EBDC Tank Mix) for Control of *Cercospora beticola* (leafspot) in Sugarbeets

Herford, Elkton, MI - 2017

(Page 2 of 4)

		T//	Ą			% \$	SUC		% C	JP
Treatment	EBD		NC		EBI	DC	NC		EBDC	NO
Treatment	Tan		Tar		Tai		Tan		Tank	Tank
	Mix	*	Mi	X	Miz	K *	Mi	X	Mix*	Mix
Inspire XT + Enable** + NIS	32.4	а	31.5	abc	19.6	abc	18.8	a-h	95.7	95.9
Minerva Duo	31.6	abc	32.0	abc	19.0	a-g	19.2	a-f	95.9	95.8
Inspire XT	30.2	а-е	30.3	а-е	19.8	а	18.6	b-h	96.0	95.5
Super Tin	30.9	a-d	31.6	abc	19.7	ab	19.0	a-g	95.5	95.8
Proline + NIS	31.8	abc	32.0	abc	18.9	a-g	18.8	a-h	95.4	95.4
Enable + NIS	30.3	а-е	30.3	а-е	19.2	a-f	18.6	c-h	95.6	95.7
Echo	32.3	ab	31.2	a-d	18.7	a-h	19.1	a-g	95.7	95.4
Inspire XT + Potassium Biocarbonate	30.9	a-d	29.7 a-e		19.3	а-е	18.5 c-h		95.5	95.4
Tilt	28.4	а-е	28.0	b-e	18.6	c-h	18.4	d-h	95.6	95.4
Priaxor	29.0	а-е	27.0	de	18.3	e-h	18.2	fgh	95.4	95.4
Topsin	28.8	а-е	30.0	а-е	18.5	c-h	18.4	d-h	95.4	95.7
Eminent	31.2	a-d	28.8	а-е	18.7	a-h	18.0	gh	95.6	95.5
Topguard	28.3	а-е	30.6	а-е	19.5	a-d	18.7	a-h	95.6	95.6
Minerva	31.0	a-d	29.3	а-е	18.2	fgh	18.8	a-h	95.5	95.7
Headline	30.1	а-е	27.7	cde	18.6	c-h	17.7	h	95.5	95.2
Untreated	26.5	е	26.5	е	16.0	i	16.0	i	95.2	95.2
Average	30.2	2	29.	.8	18	.8	18.4		95.6	95.5
LSD 5%		3.6					.9		n.	S.
CV %		8.4					.5		0.	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: A - June 28th, B - July 17th, C - Aug 1st, D - Aug 18th, E - Aug 28th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**} Fungicide Rates: Recommended rates except for Inspire XT + Enable, Enable is a half rate (4 fl oz/A)

^{*} Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/A), NIS: Preference

Evaluate Fungicides (with and w/o EBDC Tank Mix) for Control of *Cercospora beticola* (leafspot) in Sugarbeets Herford, Elkton, MI - 2017 (Page 3 of 4)

Fungicide Effect (Average of Tank mix and No Tank Mix)

No.	Treatment			Dama		Net \$	/A	RW	SA	RW	ST	T	/A	%		%	
				15-A	_									SU		CJ	
7	Minerva Duo (A&C), Manzate (B&D),	1.3	i	0.5	bc	\$1,140	abc	9178	ab	289	ab	31.8	ab	19.1	а	95.8	а
ш	Badge (E)																
8	SuperTin (A&C), Manzate (B&D),	1.3	i	0.4	С	\$1,196	а	9109	abc	291	а	31.3	abc	19.4	а	95.6	a-d
	Badge (E)																
13	Inspire + Enable + Preference (A&C),	1.4	i	0.5	С	\$1,123	a-d	9278	а	290	ab	32.0	а	19.2	а	95.8	ab
Ш	Manzate (B&D), Badge (E)																
3	Proline + Preference (A&C),	1.5	hi	0.4	С	\$1,114	b-e	8982	a-d	282	b-e	31.9	а	18.8	а-е	95.4	cde
	Manzate (B&D), Badge (E)																
12	Echo (A&C), Manzate (B&D),	1.7	hi	0.8	bc	\$1,186	ab	8989	a-d	284	а-е	31.7	ab	18.9	a-d	95.5	a-d
	Badge (E)																
1	Inspire (A&C), Manzate (B&D),	2.5	ghi	0.6	bc	\$1,105	cde	8747	b-e	289	ab	30.2	a-d	19.2	а	95.7	abc
	Badge (E)																
11	Topsin (A&C), Manzate (B&D),	3.7	f-i	0.5	C	\$1,059	def	8148	fgh	277	def	29.4	c-f	18.5	c-f	95.6	a-d
	Badge (E)																
15	Inspire + Potassium Biocar (A&C)	3.8	f-i	0.6	bc	\$1,068	c-f	8576	def	283	а-е	30.3	a-d	18.9	abc	95.5	b-e
	Manzate (B&D), Badge (E)																
6	Enable + Preference (A&C),	4.1	e-h	0.7	bc	\$1,072	c-f	8609	c-f	284	a-d	30.3	a-d	18.9	a-d	95.7	a-d
	Manzate (B&D), Badge (E)																
2	Topguard (A&C), Manzate (B&D),	5.0	d-g	0.5	bc	\$1,054	def	8432	ef	287	abc	29.5	c-f	19.1	ab	95.6	a-d
	Badge (E)																
9	Priaxor (A&C), Manzate (B&D),	6.1	c-f	0.7	bc	\$916	h	7620	h	272	f	28.0	fg	18.2	ef	95.4	cde
	Badge (E)																
14	Tilt (A&C), Manzate (B&D),	6.6	cde	0.6	bc	\$1,014	fg	7807	gh	277	def	28.2	efg	18.5	b-f	95.5	a-d
	Badge (E)																
4	Minerva (A&C), Manzate (B&D),	6.9	cd	0.8	bc	\$1,044	ef	8360	ef	278	c-f	30.2	a-d	18.5	b-f	95.6	a-d
	Badge (E)																
5	Eminent (A&C), Manzate (B&D),	7.8	С	0.8	bc	\$1,023	f	8216	fg	274	ef	30.0	b-e	18.3	def	95.5	a-d
	Badge (E)								Ū								
10	Headline (A&C), Manzate (B&D),	24.8	b	1.5	b	\$947	gh	7824	gh	271	f	28.9	def	18.2	f	95.3	de
	Badge (E)						Ū		Ŭ								
16	Untreated Check	86.3	а	23.3	а	\$873	h	6229	i	235	g	26.5	g	16.0	g	95	е
Δν	verage	10	.3	2.1	1	\$1,05	58	838	32	27	79	30	0.0	18	6	95	5
	SD 5%	2.		1.0		75.7		527		9.			.9	0.		0.	
_			.9	49.		7.1		6.3		3.			.3	3.		0.	
C,	V %	24	∙.ອ	49.	J	7.1		υ	J	ა.	J	0	.ა	ა.	I	U.	4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: A - June 28th, B - July 17th, C - Aug 1st, D - Aug 18th, D - Aug 28th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Fungicides (with and w/o EBDC Tank Mix) for Control of *Cercospora beticola* (leafspot) in Sugarbeets Heford, Elkton, MI - 2017 (Page 4 of 4)

Tank Mix Effect (Average of all Fungicide Treatments)

No.	Treatment	% Leaf	Damage	Net \$/A	RWSA	RWST	Τ/Δ	%	%
NO.	Treatment	15-Sep	15-Aug	Net \$/A	RWSA	KWSI	T/A	SUC	CJP
1	Tank Mix	7.3 b	1.4 b	\$1,060	8531 a	282 a	30.2	18.8 a	95.6
2	No Tank Mix	13.2 a	2.8 a	\$1,057	8232 b	276 b	29.8	18.4 b	95.5
		40.0	0.4	04.050	0004	070	20.0	40.0	05.5
ΑV	verage	10.3	2.1	\$1,058	8381	279	30.0	18.6	95.5
LS	SD 5%	1.0	0.5	n.s.	271.4	3.8	n.s.	0.9	n.s.
C/	/ %	27.3	73.6	10.3	9.1	3.9	8.4	3.5	0.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: A - June 28th, B - July 17th, C - Aug 1st, D - Aug 18th, E - Aug 28th.

Comments: Fungicides were evaluated with and without an EBDC tank mix partner for control of Cercospora leafspot in sugarbeets. The disease level was very high and *Alternaria alternata* (leafspot) was present at a lower level. The addition of an EBDC clearly improved leaf spot control in the triazole and strobilurin treatments. Tank mixing improved the efficacy of Super Tin and Echo (chlorothalonil) to a lesser degree. Inspire XT, Minerva Duo, Super Tin, Echo, Proline and Enable provided the best leafspot control. Priaxor and Topsin provided adequate control (probably because of Alternaria infections), however, Headline failed to control the diseases adequately. None of the treatments caused sugarbeet injury.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Fungicides (with and w/o EBDC Tank Mix) for Control of Cercospora beticola (leafspot) in Sugarbeets Mennonite Church, Pigeon, MI - 2017 (Page 1 of 4)

Trial Quality: Good Variety: C-G333NT Planted: April 28 Harvested: Oct 9

Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Loam % OM: 2.0 pH: 6.9 CEC: 10.3 Above Opt: P Below Opt: K

High: Mn Low: B Added N: 140 lbs Prev Crop: Wheat

Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.5 inches Rainfall: 15.3 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa Cerc Damage Net \$ / A RWSA RWST																
				_			<u>. </u>									
Treatment	EBC		NO		EBD		NO -		EBD		NO			DC	N	
	Tan Mix		Tar Mi		Tan Mix'		Tan Mix		Tan Mix		Tar Mi		I a Mi	nk **	Ta Mi	
Inspire XT + Enable** + NIS	0.15	g	0.43	fg	\$1,278		\$1,145				9113		307	а	287	a-d
Minerva Duo	0.23	g	0.55	fg	\$1,141	a-d	\$1,160	a-d	9045	b-e	9038	b-e	290	abc	298	abc
Inspire XT	0.23	g	0.55	fg	\$1,273	а	\$1,189	a-d	9899	ab	9146	b-e	295	abc	293	abc
Proline + NIS	0.25	g	0.55	fg	\$1,183	a-d	\$1,177	a-d	9287	a-d	9098	b-e	300	abc	299	abc
Super Tin	0.25	g	0.93	efg	\$1,149	a-d	\$1,207	a-d	8854	b-e	9133	b-e	285	a-d	298	abc
Topguard	0.88	efg	2.25	d-g	\$1,220	abc	\$1,231	ab	9527	abc	9463	a-d	296	abc	299	abc
Eminent	0.88	efg	1.25	d-g	\$1,166	a-d	\$1,127	a-d	9135	b-e	8706	cde	289	a-d	286	a-d
Enable + NIS	1.06	efg	2.25	d-g	\$1,135	a-d	\$1,125	a-d	8939	b-e	8723	cde	288	a-d	288	a-d
Echo	1.13	d-g	2.50	d-g	\$1,190	a-d	\$1,195	a-d	9109	b-e	9000	b-e	295	abc	304	abc
Minerva	1.50	d-g	3.19	d-g	\$1,183	a-d	\$1,084	b-e	9261	a-d	8391	cde	301	abc	283	bcd
Priaxor	2.00	d-g	4.8	cde	\$1,116	bcd	\$1,115	bcd	8873	b-e	8720	cde	292	abc	298	abc
Inspire + Potassium Biocarbonate	2.25	d-g	4.4	c-f	\$1,059	de	\$1,114	bcd	8385	cde	8640	cde	283	bcd	299	abc
Topsin	2.25	d-g	4.4	c-f	\$1,135	a-d	\$1,162	a-d	8751	cde	8799	b-e	294	abc	294	abc
Headline	3.10	d-g	7.9	C	\$1,145	a-d	\$1,067	cde	9072	b-e	8355	de	296	abc	293	abc
Tilt	3.35	d-g	5.1	cd	\$1,206	a-d	\$1,064	cde	9254	a-d	8075	е	300	abc	280	cd
Untreated Check	62.5	b	84.8	а	\$968	ef	\$908	f	7130	f	6621	f	267	de	256	е
Average	5.1		7.9	9	\$1,15	59	\$1,12	29	904	7	868	39	29	92	29)1
LSD 5%		3.	.3			12	7.6			930	0.3			18	3.7	

Average	5.1	7.9	\$1,159	\$1,129	9047	8689	292	291
LSD 5%	-7	.3	12	7.6	930	0.3	18	3.7
CV %	35	5.8	7.	.8	7.	4	4	.5

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: A - June 29th, B - July 17th, C - July 28th, D - Aug 15th, E - Aug 25th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**} Fungicide Rates: Recommended rates except for Inspire XT + Enable, Enable is a half rate (4 fl oz/A)

^{*} Tank Mix: Treatment is tank mixed with Manzate Max (1.6 qt/A), NIS: Preference

Evaluate Fungicides (with and w/o EBDC Tank Mix) for Control of *Cercospora beticola* (leafspot) in Sugarbeets Mennonite Church, Pigeon, MI - 2017 (Page 2 of 4)

		T /	A			% :	SUC			%	CJP	
Treatment	EBD		NC		EBI		NC		EBI		N(
	Tan Mix		Tan Miz		Tai Mix		Tan Miz		Tar Mix		Ta M	
Inspire XT + Enable** + NIS	33.4	ab	31.7	a-d	20.3	а	19.3	abc	95.7	ab	95.0	b-g
Minerva Duo	31.2	a-f	30.3	c-f	19.3	abc	19.9	ab	95.4	а-е	95.3	a-f
Inspire XT	33.7	а	31.2	a-f	19.7	ab	19.6	ab	95.4	a-f	95.2	a-g
Proline + NIS	30.9	b-f	30.4	c-f	20.1	ab	19.8	ab	95.2	a-g	95.7	ab
Super Tin	31.0	b-f	30.6	c-f	19.2	abc	19.8	ab	95.1	b-g	95.6	abc
Topguard	32.1	abc	31.6	а-е	19.8	ab	19.8	ab	95.3	a-g	95.6	ab
Eminent	31.6	а-е	30.4	c-f	19.4	abc	19.4	ab	95.2	a-g	94.7	g
Enable + NIS	30.9	b-f	30.3	c-f	19.3	abc	19.3	abc	95.4	a-f	95.1	a-g
Echo	30.9	b-f	29.6	c-f	19.7	ab	20.1	ab	95.2	a-g	95.8	а
Minerva	30.8	b-f	29.6	c-f	20.1	ab	19.1	abc	95.2	a-g	94.9	efg
Priaxor	30.4	c-f	29.2	def	19.5	ab	19.9	ab	95.2	a-g	95.4	а-е
Inspire + Potassium Biocarbonate	29.6	c-f	28.9	efg	19.1	abc	20.0	ab	95.0	c-g	95.3	a-g
Topsin	29.7	c-f	29.9	c-f	19.8	ab	19.6	ab	94.9	d-g	95.5	а-е
Headline	30.7	b-f	28.6	fg	19.7	ab	19.5	ab	95.6	a-d	95.4	а-е
Tilt	30.8	b-f	28.7	fg	20.0	ab	18.8	bc	95.3	a-g	95.1	a-g
Untreated Check	26.7	gh	25.9	n	18.1	cd	17.4	d	94.9	d-g	94.7	fg
Average	30.9	9	29.	8	19	.6	19.	5	95.	.3	95	.3
LSD 5%		2.	2			1	.1			(0.5	
CV %		5.	2			3	3.9			().4	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: A - June 29th, B - July 17th, C - July 28th, D - Aug 15th, E - Aug 25th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**} Fungicide Rates: Recommended rates except for Inspire XT + Enable, Enable is a half rate (4 fl oz/A)

^{*} Tank Mix: Treatment is tank mixed with Manzate Max (1.6 gt/A), NIS: Preference

Evaluate Fungicides (with and w/o EBDC Tank Mix) for Control of *Cercospora beticola* (leafspot) in Sugarbeets Mennonite Church, Pigeon, MI - 2017 (Page 3 of 4)

Fungicide Effect (Average of Tank mix and No Tank Mix)

No.	Treatment	% C Dam 15-S	age	Net \$	5/A	RW	SA	RWS	šΤ	T	Ά	% Suc	;	% CJP
13	Inspire + Enable + Preference (A&C), Manzate (B&D), Badge (E)	0.3	е	\$1,211	ab	9672	а	297	а	32.5	а	19.8	а	95.3
1	Inspire (A&C), Manzate (B&D), Badge (E)	0.4	de	\$1,231	а	9522	ab	294	а	32.4	а	19.6	а	95.3
7	Minerva Duo (A&C), Manzate (B&D), Badge (E)	0.4	de	\$1,151	a-d	9041	a-d	294	а	30.7	bcd	19.6	а	95.4
3	Proline + Preference (A&C), Manzate (B&D), Badge (E)	0.4	de	\$1,180	abc	9192	abc	300	а	30.7	bcd	19.9	а	95.4
8	SuperTin (A&C), Manzate (B&D), Badge (E)	0.6	de	\$1,178	abc	8993	bcd	292	а	30.8	bc	19.5	а	95.3
5	Eminent (A&C), Manzate (B&D), Badge (E)	1.1	de	\$1,146	a-d	8920	bcd	288	а	31.0	abc	19.4	а	94.9
2	Topguard (A&C), Manzate (B&D), Badge (E)	1.6	cde	\$1,225	а	9495	ab	298	а	31.9	ab	19.8	а	95.5
6	Enable + Preference (A&C), Manzate (B&D), Badge (E)	1.7	cde	\$1,130	bcd	8831	cd	288	а	30.6	bcd	19.3	а	95.2
12	Echo (A&C), Manzate (B&D), Badge (E)	1.8	cde	\$1,192	abc	9054	a-d	299	а	30.2	cd	19.9	а	95.5
4	Minerva (A&C), Manzate (B&D), Badge (E)	2.3	cde	\$1,133	bcd	8826	cd	292	а	30.2	cd	19.6	а	95.0
15	Inspire + Potassium Biocar (A&C) Manzate (B&D), Badge (E)	3.3	bcd	\$1,086	d	8513	d	291	а	29.2	d	19.5	а	95.1
11	Topsin (A&C), Manzate (B&D), Badge (E)	3.3	bcd	\$1,148	a-d	8775	cd	294	а	29.8	cd	19.7	а	95.2
9	Priaxor (A&C), Manzate (B&D), Badge (E)	3.4	bcd	\$1,115	cd	8796	cd	295	а	29.8	cd	19.7	а	95.3
14	Tilt (A&C), Manzate (B&D), Badge (E)	4.2	bc	\$1,135	bcd	8664	cd	290	а	29.8	cd	19.4	а	95.2
10	Headline (A&C), Manzate (B&D), Badge (E)	5.5	b	\$1,106	cd	8714	cd	294	а	29.6	cd	19.6	а	95.5
16	Untreated Check	73.6	а	\$938	е	6875	е	262	b	26.3	е	17.8	b	94.8
Αv	erage	6.	5	\$1,14	14	886	68	292)	30).4	19.5	5	95.3
	D 5%	3.0		86.		630		13.			.5	0.8		n.s.
CV	′ %	45	.9	7.5		7.	1	4.7	,	5.	.0	3.9		0.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: A - June 29th, B - July 17th, C - July 28th, D - Aug 15th, E - Aug 25th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Fungicides (with and w/o EBDC Tank Mix) for Control of *Cercospora beticola* (leafspot) in Sugarbeets Mennonite Church, Pigeon, MI - 2017 (Page 4 of 4)

Tank Mix Effect (Average of all Fungicide Treatments)

No.	Treatment	% Ce Dama 15-Se	ge	Net \$/A	RWS	A	RWST	T/A	١.	% Suc	% CJP
1	Tank Mix	5.1	b	\$1,159	9047	а	292	30.9	а	19.6	95.2
2	No Tank Mix	7.9	а	\$1,129	8667	b	291	29.8	b	19.5	95.3
A۱	verage	6.5		\$1,144	8857	7	292	30.4	4	19.5	95.3
LS	SD 5%	0.8		n.s.	232.6	Ĝ	n.s.	0.6	6	n.s.	n.s.
C/	V %	35.8	3	7.8	7.4		4.5	5.2	2	3.9	0.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: A - June 29th, B - July 17th, C - July 28th, D - Aug 15th, E - Aug 25th.

Comments: Fungicides were evaluated with and without an EBDC tank mix partner for control of Cercospora leafspot in sugarbeets. The disease level was high. Fungicides tank mixed with an EBDC provided significantly better leafspot control than the same fungicides that were not tank mixed. Sugarbeet yields were also improved when fungicides were tank mixed with an EBDC. Inspire XT, Minerva Duo, Proline and Super Tin were the top treatments. Topguard, Enable, chlorothalonil and Minerva also provided good control. Topsin, Priaxor, Tilt and Headline were fairly effective. None of the treatments cause sugarbeet phytotoxicity.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Herford, Elkton, MI - 2017

(Page 1 of 3)

Trial Quality: Fair - Good

Variety: B -149N Planted: April 27 Harvested: Oct 4

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Soil Info: Loam

% OM: 2.9 pH: 7.7 CEC: 12.8 Above Opt: P Opt: K

High: Mn Med: B Added N: 140 lbs

Prev Crop: Wheat

Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.5 inches

Rainfall: 22.2 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment*	Rate/A	Dan	Cerc nage -Sep	% SI Phyt 18-Au	0	Net \$	/A	RWS	SA	RW	VST	T/A	Δ.	% SU	
27	Super Tin + Echo (3 applications)	8 fl oz + 3 pt	0.9	0	2.5	С	\$1,401	а	10196	а	304	abc	33.5	а	20.1	abc
	Echo 720 (4 applications)	3 pt														
23	Super Tin + Badge (3 applications)	8 fl oz + 3 pt	1.0	0	1.9	С	\$1,214	bcd	9112	bc	309	ab	29.5	b-e	20.4	ab
	Badge (4 applications)	3 pt														
21	Super Tin + Manzate (3 applications)	8 fl oz + 1.6 qt	1.3	0	1.3	С	\$1,246	bc	9284	b	308	abc	30.2	bc	20.3	abc
	Manzate (4 applications)	1.6 qt														
26	Super Tin + Echo (3 applications)	8 fl oz + 2 pt	1.5	0	1.9	С	\$1,284	ab	9273	р	298	a-d	31.2	ab	19.7	a-d
	Echo (4 applications)	2 pt														
25	Echo (8 applications)	3 pt	2.0	no	0.0	С	\$1,199	bcd	8693	b-e	311	а	27.9	b-h	20.5	а
22	Super Tin + Badge (3 applications)	8 fl oz + 2 pt	2.5	mno	1.3	С	\$1,200	bcd	8833	bcd	296	a-d	29.9	bc	19.7	a-d
	Badge SC (4 applications)	2 pt														
24	Echo (8 applications)	2 pt	3.4	mno	0.0	С	\$1,240	bc	8850		293	a-d	30.1	bc	19.5	
2	Manzate (4 applications)	1.6 qt	4.5	I-o	0.0	С	\$1,139	cde	8493	b-e	302	abc	28.1	b-g	20.1	abc
	Badge (4 applications)	3 pt														
4	Cuprofix (8 applications)	3 lb	5.4	k-o	0.0	С	\$1,121	cde	8343	b-e	290	cde	28.8	b-f	19.3	cde
6	Badge (8 applications)	3 pt	7.1	k-n	0.0	С	\$1,100	cde	8250	cde	298	a-d	27.7	c-h	19.8	abc

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: Trts 1-20, 24, 25: A - June 28th, B - July 6th, C - July 17th, D - July 29th, E - Aug 8th,

F - Aug 18th, G - Aug 29th, H - Sept 9th.

Trts 21-23, 26, 27: A - June 28th, B - July 11th, C - July 21st, D - Aug 8th, E - Aug 18th,

F - Aug 29th, G - Sept 6th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Herford, Elkton, MI - 2017

(Page 2 of 3)

No.	Treatment*	Rate/A	% C Dama 19-8	age	% S Phy 18-A	to	Net \$/A		RW	SA	RW	/ST	T/	Α		AC
1	Manzate Max (4 applications)	1.6 qt	8.0	j-m	0.0	С	\$1,108 co	de	8179	cde	297	a-d	27.7	c-h	19.7	a-d
	Badge (4 applications)	2 pt														
3	Cuprofix (8 applications)	2 lb	9.5	Ţ	0.0	С	\$1,188 b	cd	8811	bcd	298	a-d	29.6	bcd	19.8	a-d
5	Badge (8 applications)	2 pt	10.3	ijk	0.0	С	\$1,180 b	cd	8600	b-e	293	bcd	29.4	b-e	19.4	bcd
18	Potassium Biocarbonate + Badge (8 applications)	5 lb + 2 pt	12.8	ij	0.0	С	\$1,035 €	ef	7763	ef	281	def	27.7	c-h	18.8	def
12	Badge + Round up (3 applications)	2 pt + 32 fl oz	14.5	i	17.5	ab	\$1,076 d	le	7974	de	294	a-d	27.2	c-i	19.5	a-d
	Badge (4 applications)	2 pt														
14	Cueva (8 applications)	4 qt	38.5	h	0.0	С	\$922 f		6959	fg	275		25.3	ghi	18.4	efg
9	AGRILIFE** (8 applications)	57 fl oz	51.5	g	0.0	С	\$820 g	jh	6810	gh	269	fgh	25.4	f-i	18.1	fgh
8	AGRILIFE** (8 applications)	32 fl oz	58.0	f	0.0	С	\$895 (g	6770	gh	267	f-i	25.4	f-i	18.0	f-i
7	AGRILIFE (OLD) (8 applications)	38 fl oz	61.3	f	0.0	С	\$889 (g	6732	gh	268	fgh	25.2	ghi	18.2	fgh
15	Cueva + Double Nickel (8 applications)	2 qt + 1 qt	69.0	е	0.0	С	\$812 g	jh	6751	gh	257	hij	26.3	d-i	17.5	g-k
13	Cueva (8 applications)	2 qt	73.5	de	0.0	С	\$825 g	jh	6284	gh	263	ghi	24.0	i	17.8	g-j
11	AGRILIFE** + Round up (3 applications)	57 fl oz + 32 fl oz	76.0	d	18.8	а	\$663	İ	5810	h	233	ı	25.0	ghi	16.5	lm
	AGRILIFE** (4 applications)	57 fl oz														
19	Ammonium Bicarbonate (8 applications)	5 lb	81.8	С	0.0	С	\$926 f	g	6596	gh	251	h-k	26.1	e-i	17.1	i-m
10	AGRILIFE** + Round up (3 applications)	32 fl oz + 32 fl oz	81.8	С	16.3	b	\$820 g	jh	6345	gh	254	hij	25.0	ghi	17.3	h-l
	AGRILIFE** (4 applications)	32 fl oz														

^{**} New Formulation of AgriLife

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: Trts 1-20, 24, 25: A - June 28th, B - July 6th, C - July 17th, D - July 29th, E - Aug 8th,

F - Aug 18th, G - Aug 29th, H - Sept 9th.

Trts 21-23, 26, 27: A - June 28th, B - July 11th, C - July 21st, D - Aug 8th, E - Aug 18th,

F- Aug 29th, G - Sept 6th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Herford, Elkton, MI - 2017

(Page 3 of 3)

No.	Treatment*	Rate /A	% Co Dama 19-S	age	% S Phy 18- <i>A</i>	/to	Net \$	/A	RWS	SA	RW	ST	Τ//	A	% SU	
20	Sodium Bicarbonate (8 applications)	5 lb	83.0	bc	0.0	С	\$863	g	6161	gh	251	ijk	24.5	hi	17.0	j-m
17	Potassium Biocarbonate (8 applications)	5 lb	84.5	bc	0.0	С	\$846	g	6046	gh	245	jkl	24.8	ghi	16.7	klm
16	Potassium Biocardonate (8 applications)	3 lb	87.8	b	0.0	С	\$810	gh	5790	h	241	jkl	24.0	İ	16.4	lm
28	Untreated Check		95.5	а	0.0	С	\$ 698	hi	4847	i	235	kl	20.6	j	16.1	m
Ave	erage		36.	7	2.	2	\$1,01	18	759	1	27	8	27	.1	18	.6
LS	D 5%		4.9	9	1.	6	123.	4	857	.2	15.	.2	2.	9	0.	9
CV	7 %		9.5	5	71	.5	8.6	•	8.0)	3.9	9	7.	6	3.	3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: Trts 1-20, 24, 25: A - June 28th, B - July 6th, C - July 17th, D - July 29th, E - Aug 8th,

F - Aug 18th, G - Aug 29th, H - Sept 9th.

Trts 21-23, 26, 27: A - June 28th, B - July 11th, C - July 21st, D - Aug 8th, E - Aug 18th,

F - Aug 29th, G - Sept 6th

Comments: Non-systemic protectants including EBDCs, Coppers, Super Tin, Bicarbonates and Chlorothalonil were evaluated for control of Cercospora leafspot. The disease level was very high and included lower infections from Alternaria alternata (leafspot.) Super Tin combinations and Echo (chlorothalonil) provided the best control of leafspots in this trial and kept the damage below an economic level. Manzate, Badge and Cuprofix were somewhat less effective. Leafspot control (suppression) with AgriLife and Cueva was unacceptable. Tank mixing coppers with Roundup caused leaf spotting and decreased leafspot control. Sodium, potassium and ammonium bicarbonates were the least effective of the treatments, but were an improvement over the untreated check. Depending upon cost, the bicarbonates may be useful as a tank mix additive, not to replace, but in addition to an EBDC or Copper. It should be noted that chlorothalonil is not approved for use in sugarbeets.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Ziel, Pigeon, MI - 2017

(Page 1 of 3)

Trial Quality: Fair - Good

Variety: B-149N Planted: April 26 Harvested: Oct 6

Plots: 6 rows X 38 ft, 4 reps **Row Spacing:** 22 inches

Soil Info: Sandy Loam

'% OM: 3.2 pH: 7.5 CEC: 12.0 Above Opt: P Below Opt: K

High: Mn Med: B Added N: 140 lbs Prev Crop: Wheat Rhizoc Level: Low Cerc Control: See trts. Problems: Field variation Seeding Rate: 4.5 inches

Rainfall: 15.1 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

		T	•		•		•		100 100,	9								,
No.	Treatment*	Rate / A	% C			nage Aug	Phyto		Net \$	/ A	RW	SA	RW	/ST	T	/ A	SL	/s JC
27	Super Tin + Echo	8 fl oz +	0.8	f	0.9	е	1.3	de	\$1,477	ab	8997	ab	253	bcd	35.6	а	17.2	bcd
	(3 applications)	3 pt																
	Echo	3 pt																
	(4 applications)																	
25	Echo	3 pt	0.9	f	0.9	е	0	е	\$1,460	ab	8813	a-d	261	abc	33.6	abc	17.5	abc
	(8 applications)																	
23	Super Tin + Badge	8 fl oz +	0.9	f	1.1	b-e	2.5	de	\$1,419	abc	8841	abc	251	bcd	35.2	ab	17.0	cd
	(3 applications)	3 pt																
	Badge SC	3 pt																
	(4 applications)																	
21	Super Tin + Manzate	8 fl oz +	1.1	f	1.1	cde	2.5	de	\$1,424	abc	8827	abc	253	bcd	34.9	abc	16.9	cd
	(3 applications)	1.6 qt																
	Manzate	1.6 qt																
	(4 applications)																	
22	Super Tin + Badge	8 fl oz +	1.3	f	1.1	b-e	3.1	d	\$1,526	а	9310	а	261	abc	35.6	а	17.5	abc
	(3 applications)	2 pt																
	Badge SC	2 pt																
	(4 applications)																	
26	Super Tin + Echo	8 fl oz +	2.5	f	0.9	е	1.3	de	\$1,395	a-d	8426	а-е	252	bcd	33.4	abc	17.0	bcd
	(3 applications)	2 pt																
	Echo 720	2 pt																
	(4 applications)																	
4	Cuprofix	3 lb	2.5	f	1.3	bcd	0	е	\$1,436	abc	8834	abc	270	а	32.8	abc	18.1	а
	(8 applications)																	
3	Cuprofix	2 lb	3.8	ef	1.2	b-e	0	е	\$1,343	bcd	8294	а-е	252	bcd	33.0	abc	17.0	bcd
	(8 applications)																	
2	Manzate	1.6 qt	5.9	ef	1.1	cde	0	е	\$1,373	a-d	8491	а-е	266	ab	31.9	bc	17.9	ab
	(4 applications)																	
	Badge SC	3 pt																
	(4 applications)																	
24	Echo	2 pt	6.5	ef	1.1	cde	0	е	\$1,440	abc	8592	а-е	251	bcd	34.2	abc	17.0	bcd
	(8 applications)																	

^{*}Phyto: % Injury to sugarbeet leaves caused by fungicide treatment.

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: Trts 1-20, 24, 25: A - June 27th, B - July 6th, C - July 17th, D - July 27th, E - Aug 7th,

F - Aug 16th, G - Aug 26th, H - Sept 9th.

Trts 21-23, 26, 27: A - June 27th, B - July 11th, C - July 21st, D - July 31st, E - Aug 9th,

F - Aug 23rd, G - Sept 5th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Ziel, Pigeon, MI - 2017

(Page 2 of 3)

N	T	Dete / A	% C	erc	Dam	age	Phy	to %	No.4 C	/ A	RW	C 4	DIA	СТ			%	
No.	Treatment*	Rate / A	19 - S	ер	2-/	Aug	14-	Aug	Net \$	/A	RVV	SA	RW	51	T/	A	SU	С
1	Manzate	1.6 qt	6.8	ef	1.0	de	0	е	\$1,335	bcd	8180	b-e	254	bcd	32.4	abc	17.3	a-d
	(4 applications)																	
	Badge SC	2 pt																
	(4 applications)			_					* • • • •									
6	Badge	3 pt	7.6	ef	1.3	bcd	0	е	\$1,241	d	7742	е	241	de	32.2	abc	16.4	de
5	(8 applications) Badge	2 pt	9.3	ef	1.4	ab	0	е	\$1,281	od	7808	de	249	cd	31.4	cd	16.9	cd
	(8 applications)	2 βι	9.3	eı	1.4	au	U	ь	φ1,201	cu	7000	ue	249	cu	31.4	cu	10.9	Cu
12	Badge + Round up	2 pt +	12.8	е	1.4	abc	14	С	\$1,272	cd	7830	cde	246	cd	31.8	bc	16.7	cd
	(4 applications)	32 fl oz							, ,									
	Badge SC	2 pt																
	(4 applications)																	
18	Potassium Biocarb.*	5 lb +	46.8	d	1.4	abc	0	е	\$1,043	е	6560	f	230	ef	28.5	de	15.7	ef
	+ Badge	2 pt																
	(8 applications)	57.0	10.0		4.0		_		0040	•	F70.4	r	000	•	05.5	c	45.0	
9	AGRILIFE**	57 fl oz	48.3	d	1.3	bcd	0	е	\$819	fg	5704	fg	223	fg	25.5	ef	15.2	fg
14	(8 applications) Cueva	4 qt	57.8	С	1.4	abc	0	е	\$911	efa	5776	fg	221	fah	26.1	е	15.2	fa
	(8 applications)	٦٠٩٠	07.0	Ü	''	abo	Ü	O	ΨΟΤΤ	oig	0110	'9		1911	20.1	Ŭ	10.2	19
8	AGRILIFE**	32 fl oz	70.8	b	1.3	bcd	0	е	\$959	ef	6052	fg	228	efg	26.5	е	15.6	ef
	(8 applications)																	
15	Cueva + Double	2 qt +	77.0	b	1.3	a-d	0	е	\$765	g	5390	g	215	ghi	25.1	ef	14.8	fgh
	Nickel (8 applic)	1 qt																
17	Potassium Biocarb.	5 lb	90.8	а	1.3	a-d	0	е	\$852	fg	5105	gh	204	ij	25.1	ef	14.1	hi
12	(8 applications) Cueva	O ==#	90.8		1.2	- d	0		CO24	£ co	F066	a la	207	la ii	25.4	o.f	14.2	a la i
13	(8 applications)	2 qt	90.8	а	1.3	a-d	U	е	\$824	ıg	5266	gh	207	hij	25.4	ef	14.3	gni
20	Sodium Bicarb.	5 lb	92.0	а	1.4	ab	0	е	\$902	efa	5394	q	204	ij	26.5	е	14.1	hi
	(8 applications)		32.3	_		J.2			7332	5.9	3301	9		,				
7	AGRILIFE (OLD)	38 fl oz	92.0	а	1.6	а	0	е	\$853	fg	5439	g	207	hij	26.3	е	14.5	ghi
	(8 applications)											-		-				
19	Ammonium Bicarb.	5 lb	93.8	а	1.4	ab	0	е	\$894	efg	5350	g	204	ij	26.2	е	14.2	hi
	(8 applications)																	
11	AGRILIFE** +	57 fl oz +	93.8	а	1.6	а	21	а	\$768	g	5486	g	213	ghi	25.7	ef	14.8	fgh
	Roundup (3 applic)	32 fl oz																
	AGRILIFE* *	57 fl oz																
	(4 applications)																	

^{*}BiCarb: Bicarbonate.

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: Trts 1-20, 24, 25: A - June 27th, B - July 6th, C - July 17th, D - July 27th, E - Aug 7th,

F - Aug 16th, G - Aug 26th, H - Sept 9th.

Trts 21-23, 26, 27: A - June 27th, B - July 11th, C - July 21st, D - July 31st, E - Aug 9th,

F - Aug 23rd, G - Sept 5th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**}New Formulation of AgriLife.

Ziel, Pigeon, MI - 2017

(Page 3 of 3)

No.	Treatment*	Rate / A	% C	erc	Dama	ge	Phy	to %	Net	£/A	RWS		RW	2Т	T//	۸	%	
NO.	Treatment	Rate / A	19 - Se	ер	2-A	ug	14-	٩ug	ivet.	φ/ /~ .	KWS	_	LVV	3 I	- "	^	SUC	C
16	Potassium Biocarb (8 applications)	3 lb	95.0	а	1.3	bcd	0	е	\$918	efg	5492	g	207	hij	26.5	е	14.3	hi
10	AGRILIFE** + Roundup (3 applic)	32 fl oz + 32 fl oz	96.3	а	1.4	ab	18	Ф	\$852	fg	5509	g	208	hij	26.5	Ф	14.4	ghi
	AGRILIFE**	32 fl oz																
	(4 applications)	32 11 02																
28	Untreated Check		100.0	а	1.4	ab	0	е	\$756	g	4404	h	196	j	22.5	f	13.7	i
Ave	erage		43.1	1	1.	3	2.	3	\$1,1	26	699	7	23	3	30	0	15.9	9
LS	O 5%	_	8.55	5	0.	3	2.	1	148	.9	867.	9	13.	8	3.0	0	0.8	}
CV	%		14.1	1	16	.3	65	.1	9.4	1	8.8		4.2	2	7.3	3	3.5	5

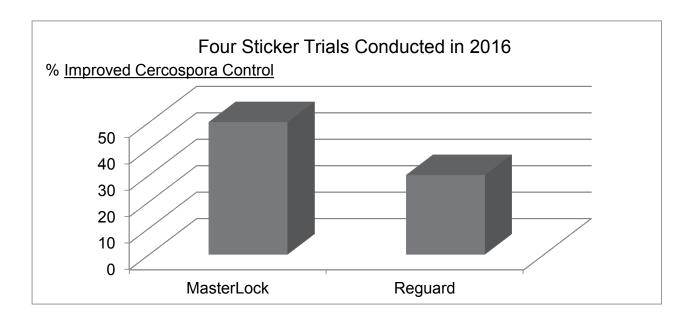
^{**}New Formulation of AgriLife.

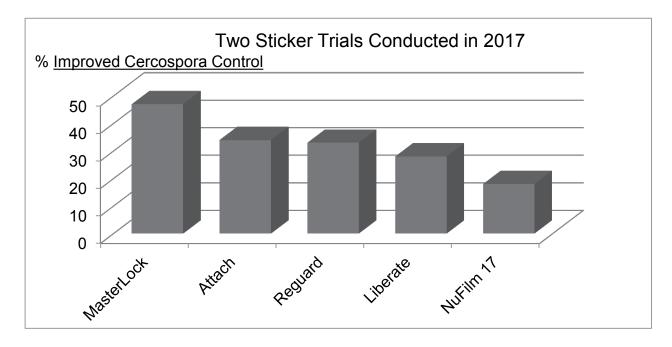
Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: Trts 1-20, 24, 25: A - June 27th, B - July 6th, C - July 17th, D - July 27th, E - Aug 7th,

F - Aug 16th, G - Aug 26th, H - Sept 9th.

Trts 21-23, 26, 27: A - June 27th, B - July 11th, C - July 21st, D - July 31st, E - Aug 9th,


F - Aug 23rd, G - Sept 5th.


Comments: Non-systemic protectant fungicides including EBDCs, Coppers, Super Tin, Bicarbonates and chlorothalonil were evaluated for control of Cercospora leafspot. Super Tin combinations and Echo (chlorothalonil) provided the best control of leafspots in this trial and kept the damage below the economic damage level. Manzate, Badge and Cuprofix were somewhat less effective. Leafspot control with AgriLife, Cueva and the bicarbonates was unacceptable, but did provide an improvement over the untreated. When mixing coppers with Roundup, phytotoxicity occurred and leafspot control was reduced. The bicarbonates may be useful as a tank mix additive, not to replace, but in addition to an EBDC or Copper. It should be noted that chlorothalonil is not approved for use in Michigan. The disease level was very high.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Influence of Sticker Spreaders on the Efficacy of Fungicides for Controlling Cercospora Beticola (Leafspot) in Sugarbeets Two Year Summary (Page 1 of 5)

Comments: Super Tin, Manzate, Badge and Eminent were applied with and without adjuvants (sticker / spreaders) in 2016 and 2017. MasterLock and Reguard were utilized in 2016 and MasterLock, Reguard, Attach, Liberate and NuFilm 17 were used in 2017. The disease pressure was high at most sites. The % values represent improvement in leafspot control using stickers compared to fungicides applied without a sticker. All of the stickers improved the efficacy of fungicides, however, MasterLock clearly performed better than the other stickers in the trials.

Evaluate Sticker / Spreaders added to Fungicides for Cercospora Leafspot Control in Sugarbeets

Mennonite Church, Pigeon, MI - 2017

(Page 2 of 5)

Trial Quality: Good Variety: B-133N Planted: April 28 Harvested: Oct 10

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches Soil Info: Sandy Loam

%OM: 2.0 pH: 6.9 CEC: 10.3 Above Opt: P Below Opt: K High: Mn Low: K

Added N: 140 lbs
Prev Crop: Wheat

Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.5 inches Rainfall: 15.3 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment	Sticker	% Ce				Net \$	/Δ	RWS	SΔ	RW	ST	Т	Ά	%			6
No.	rreatment	Otickei	5-Sep)	22-	Aug	Νοιψ	<i>'</i> ^		<i>-</i>	IXV	J 1			SU	C	C	ΙP
4	EBDC	Masterlock	3.5	d	1.0	f	\$1,061	а	8946	а	310	а	28.9	а	20.4	а	95.8	а
10	EBDC	Attach	3.8	d	1.0	f	\$940	c-f	8270	bcd	303	ab	27.3	bcd	20.1	ab	95.7	ab
12	EBDC	Liberate	4.3	d	1.3	f	\$1,003	b	8731	а	302	ab	28.9	а	20.1	ab	95.6	abc
6	EBDC	Reguard	4.5	d	1.0	f	\$990	bc	8631	ab	297	bc	29.0	а	19.7	bcd	95.7	ab
8	EBDC	NuFilm 17	6.0	d	1.0	f	\$930	def	8197	cde	299	bc	27.4	bcd	19.8	bc	95.6	abc
2	EBDC	None	6.5	d	2.2	f	\$972	b-e	8096	c-f	290	cd	27.9	abc	19.4	cde	95.4	bc
11	Triazole	Liberate	8.7	d	2.8	ef	\$883	f	7683	fg	283	d	27.1	cd	19.0	е	95.2	cd
3	Triazole	Masterlock	9.0	d	3.7	def	\$983	bcd	8323	bc	289	cd	28.8	а	19.3	cde	95.4	abc
9	Triazole	Attach	15.5	С	5.8	cde	\$911	f	7887	d-g	287	d	27.5	bcd	19.2	de	95.3	bc
5	Triazole	Reguard	15.7	С	6.3	bcd	\$926	ef	7989	c-g	282	d	28.3	ab	18.9	е	95.3	bc
7	Triazole	NuFilm 17	15.9	С	7.3	bc	\$906	f	7847	efg	284	d	27.6	bcd	18.9	е	95.7	ab
1	Triazole	None	21.3	b	9.3	b	\$897	f	7606	g	285	d	26.7	d	19.0	е	95.4	bc
13	Untreated Ch	eck	78.3		54.3		\$888	g	6465	h	259	е	25.0	е	17.6	f	94.9	d
Av	erage		14.8		7	.5	\$950	0	805	52	29	90	27	.7	19	.3	95	5.5
LS	D 5%		5.1		3	.2	51.6	6	375	.5	8.	9	1.	.0	0.	5	0.	.4
CV	,		28.9		36	6.1	4.6		4.0)	2.	6	3.	.1	2.	3	0.	.3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Sticker / Spreaders added to Fungicides for Cercospora Leafspot Control in Sugarbeets

Mennonite Church, Pigeon, MI - 2017

(Page 3 of 5)

Effect of Fungicide Program

No.	Treatment	% C	erc [Damag	е	Net \$	/Δ	RWS	Δ	RW	ST	T/	Δ	%		%	
NO.	rreatment	5-Se	p	22-A	ug	Νοιψ	' ^	KWC		KW				SU	С	CJ	P
2	EBDC	4.8	b	1.3	b	\$983	а	8479	а	300	а	28.2	а	19.9	а	95.6	а
1	Triazole	14.4	а	5.9	а	\$918	b	7889	b	285	b	27.7	b	19.1	b	95.4	b
		0.0			,	005	,	040		00	^	07	^	40	-	0.5	_
A	verage	9.6		3.6)	\$950	J	818	4	29	3	27	.9	19.	5	95.	.5
LS	SD 5%	2.1		1.3	3	21.1		153.	3	3.6	3	0.4	4	0.2	2	0.2	2
С	V %	45.0)	75.	6	4.6		3.9		2.6	3	3.	0	2.3	3	0.3	3

Effect of Spreader / Sticker

No.	Treatment	% C	erc [Damag	je	Not ¢	Net \$/A		٠.۸	RWST	T/A		%	%
NO.	Heatment	5-Se	p	22-Aug		Νοι ψ/Α		RWS		INVOI	1//		SUC	CJP
2	Masterlock	6.3	С	2.3	b	\$1,022	а	8635	а	299 a	28.8	а	19.9 a	95.6 a
6	Liberate	6.5	С	2.1	b	\$944	b	8207	ab	293 a	28.0	ab	19.5 a	95.4
5	Attach	9.6	b	3.4	b	\$926	b	8079	b	295 a	27.4	b	19.6 a	95.5
3	Reguard	10.1	b	3.7	ab	\$958	ab	8310	ab	290 a	28.7	а	19.3 a	95.5
4	NuFilm 17	11.0	b	4.2	ab	\$918	b	8022	b	292 a	27.5	b	19.4 a	95.7
1	None	13.9	а	5.8	а	\$935	b	7851	b	287 a	27.3	b	19.2 a	95.4
											•			
A۱	/erage	9.6	i	3.	6	\$950	0	818	4	293	27.9		19.5	95.5
LS	SD 5%	2.8		2.	3	66.3	3	482	.4	10.9	1.1		0.66	0.36
C/	V %	35.2	2	75	.3	8.3		7.0)	4.4	4.5		4.1	0.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

EBDC Program - June 29th, July 10th, July 19th, July 28th, Aug 8th, Aug 18th, Aug 28th. Triazole Program - June 29th, July 17th, July 28th, Aug 14th.

Comments: Sticker / Spreaders were added to fungicides and evaluated for Cercospora leafspot control. The disease pressure was high and consisted of *Cercospora beticola* (70%) and *Alternaria alternata* (30%). All of the stickers provided better leafspot control than fungicides without stickers. MasterLock appeared to provide the best results. With respect to fungicides, the EBDC program was superior to the triazole program, probably because of the Alternaria infections. None of the treatments caused sugarbeet phytotoxicity. Results were similar in another trial conducted in 2017 and in four trials conducted in 2016.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Sticker / Spreaders added to Fungicides for Cercospora Leafspot Control in Sugarbeets

Ziel, Pigeon, MI - 2017

(Page 4 of 5)

Trial Quality: Good Variety: B-133N Planted: April 26

Harvested: Oct 9 Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Soil Info: Sandy Loam **%OM:** 3.2 **pH:** 7.5 **CEC:** 12

Above Opt: P Below Opt: K High: Mn Low: B

Prev Crop: Wheat

Added N: 140 lbs

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.5 inches Rainfall: 15.3 inches

% Cerc Damage

No.	Treatment	Sticker	% Cerc Damage		Net \$	/ ^	RWS	2.4	RW	ет	T/	۸	%		%		
NO.	rreatment	Sticker	19 - S	ер	28-A	ug	NGL Ø	/ ^	IXVV		IZAA	31	17	^	SU	С	CJP
20	Super Tin	MasterLock	3.8	g	1.8	i	\$1,224	а	7694	а	236	ab	32.5	а	15.8	abc	95.8
23	Super Tin	Attach	4.1	g	2.3	hi	\$1,172	ab	7538	ab	232	abc	32.5	а	15.6	a-d	95.7
19	Super Tin	None	4.5	g	2.8	hi	\$1,157	abc	7185	a-d	237	ab	30.4	abc	15.9	abc	95.8
24	Super Tin	Liberate	4.8	g	2.3	hi	\$1,045	b-f	6823	a-h	223	b-f	30.7	abc	15.1	b-g	95.4
22	Super Tin	NuFilm 17	4.9	g	2.3	hi	\$1,129	a-d	7296	abc	237	ab	30.8	abc	15.9	abc	95.9
21	Super Tin	Reguard	5.1	g	2.0	i	\$1,084	а-е	7041	а-е	237	ab	29.7	a-d	15.9	ab	95.6
10	EBDC	NuFilm 17	5.5	g	2.3	hi	\$1,036	b-g	6955	a-f	227	a-d	30.5	abc	15.5	а-е	95.3
9	EBDC	Reguard	8.3	g	3.5	hi	\$1,045	b-f	7002	а-е	236	ab	29.6	a-d	15.9	abc	95.9
8	EBDC	MasterLock	12.5	fg	5.8	h	\$1,189	ab	7681	а	239	а	32.1	ab	16.2	а	95.5
11	EBDC	Attach	21.3	ef	9.0	g	\$830	ij	5796	j	209	fg	27.7	cd	14.3	gh	95.3
15	Copper	Reguard	26.0	de	10.5	fg	\$962	e-i	6357	d-j	233	abc	27.3	cd	15.9	abc	95.2
18	Copper	Liberate	29.0	cde	12.8	ef	\$1,045	b-f	6826	a-h	227	а-е	30.1	abc	15.4	а-е	95.2
12	EBDC	Liberate	29.5	cde	13.3	ef	\$879	g-j	6073	f-j	218	c-f	27.8	cd	14.9	d-g	95.2
14	Copper	MasterLock	33.5	cd	14.8	de	\$1,049	b-f	6711	b-i	225	а-е	29.8	a-d	15.2	b-g	95.8
7	EBDC	None	37.3	cd	16.8	d	\$981	d-i	6374	d-j	220	c-f	29.0	a-d	14.9	d-g	95.7
5	Triazole	Attach	37.3	cd	16.8	d	\$1,009	c-h	6879	a-g	229	a-d	30.0	abc	15.7	a-d	95.1
2	Triazole	MasterLock	40.0	С	17.0	d	\$1,010	c-h	6753	b-i	222	b-f	30.4	abc	15.2	b-g	95.1
17	Copper	Attach	40.5	С	17.3	d	\$935	e-i	6209	e-j	225	а-е	27.5	cd	15.3	a-f	95.5
13	Copper	None	54.8	b	24.8	С	\$946	e-i	6001	g-j	211	ef	28.4	bcd	14.5	fg	95.3
4	Triazole	NuFilm 17	59.5	b	25.0	С	\$860	hij	6044	g-j	209	fg	28.9	a-d	14.3	gh	95.2
1	Triazole	None	62.3	b	26.5	bc	\$890	f-j	5941	hij	214	def	27.6	cd	14.7	efg	95.1
16	Copper	NuFilm 17	63.5	b	27.5	bc	\$876	hij	5873	ij	223	b-f	26.3	d	15.1	b-g	95.5
6	Triazole	Liberate	65.8	b	28.5	b	\$950	e-i	6549	c-j	222	b-f	29.4	a-d	15.1	b-g	95.5
3	Triazole	Reguard	65.8	b	29.8	b	\$918	f-j	6368	d-j	220	c-f	29.0	a-d	15.0	c-g	95.2
25	Untreated	None	100.0	а	42.0	а	\$770	j	4324	j	197	f	22.0	d	13.6	g	95.0
Av	erage		32.	8	14.3	3	\$1,00	00	657	2	22	4	29	.2	15.	2	95.4
	D 5%		10.6		3.2	3.2		134.5		.4	13	.1	3.	1	0.7	7	n.s.

Average	32.8	14.3	\$1,000	6572	224	29.2	15.2	95.4
LSD 5%	10.6	3.2	134.5	755.4	13.1	3.1	0.7	n.s.
CV%	22.9	15.7	9.5	8.1	4.1	7.4	3.5	0.5

Means followed by same letter are not significantly different (P=.05, Duncan's New MRT)

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Sticker / Spreaders added to Fungicides for Cercospora Leafspot Control in Sugarbeets

Ziel, Pigeon, MI - 2017

(Page 5 of 5)

Effect of Spreader / Sticker

No.	Treatment	% C	Damage	Net \$/A RWSA			RWST		T/A		%		%			
NO.	rreatment	19-Se	19-Sep		ug	Net \$/	^	KW5/	٦,	KWSI		I/A		SU	C	CJP
2	MasterLock	22.4	С	9.8	d	\$1,118	а	7210	а	231	а	31.2	а	15.6	ab	95.5
5	Attach	25.8	С	11.3	cd	\$987	b	6605	b	224	b	29.4	b	15.2	bc	95.4
3	Reguard	26.3	С	11.4	С	\$1,002	b	6692	b	231	а	28.9	b	15.7	а	95.5
6	Liberate	32.3	b	14.2	b	\$980	b	6568	b	222	b	29.5	b	15.1	С	95.3
4	Nu Film 17	33.3	b	14.3	b	\$975	b	6542	b	224	b	29.1	b	15.2	С	95.5
1	None	39.7	а	17.7	а	\$994	b	6375	b	221	b	28.8	b	15.0	С	95.5
A۱	/erage	30.0		13.	1	\$1,009	9	6665		225		29.5		15.3		95.4
LS	SD 5%	5.3		1.6	3	67.2		377.7		6.5		1.5		0.4		n.s.
C,	V%	25.0		17.	1	9.4		8.0		4.1		7.3		3.4	ļ.	0.5

Effect of Fungicide Program

No.	Treatment	% C	erc l	Damage	;	Net \$/	^	RWS	۸	RWS	.	T/A	%	%
NO.	rreatment	19-Sep		28-Aug		Net \$/A		KWS	^	KWS		I/A	SUC	CJP
4	Super Tin	4.5	d	2.2	d	\$1,135	а	7263	а	233	а	31.1	15.7	95.7 a
2	EBDC	19.0	С	8.4	С	\$993	b	6647	ab	225	ab	29.5	15.3	95.5 b
3	Copper	41.2	b	17.9	b	\$969	b	6329	b	224 b		28.2	15.2	95.4 b
1	Triazole	55.1	а	23.9	а	\$939	b	6422	b	219	b	29.2	15.0	95.2 c
A۱	/erage	30.0		13.1		\$1,009		6665		225		29.5	15.3	95.4
LS	SD 5%	6.6		1.5		116.1		652.3	3	9.1		n.s.	n.s.	0.1
C,	V%	33.9		17.	1	17.6		15.0		6.2		13.0	5.6	0.2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Triazole Program: June 29th, July 13th, July 24th, Aug 10th, Aug 21st, Sept 5th.

EBDC Program: June 29th, July 6th, July 19th, Aug 1st, Aug 9th, Aug 21st, Aug 30th, Sept 7th. Copper Program: June 29th, July 6th, July 29th, Aug 1st, Aug 9th, Aug 21st, Aug 30th, Sept 7th.

Super Tin Program: June 29th, July 13th, July 21st, Aug 2nd, Aug 14th, Sept 2nd.

Comments: Sticker / spreaders were added to fungicides and evaluated for Cercospora leafspot control. The disease pressure was very high and consisted of Cercospora beticola (70%) and Alternaria alternata (30%). All of the stickers provided better leafspot control than fungicides without stickers. MasterLock appeared to provide the best results. With respect to fungicide, the Super Tin program was more effective than the other products. The triazole program was the least effective, probably because of the Alternaria infections. None of the treatments caused sugarbeet phytotoxicity. Results were similar in another trial conducted in 2017 and in four trials conducted in 2016.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Chlorothalonil for Control of Cercospora (Cercospora beticola) Leafspot in Sugarbeets

Herford, Elkton, MI - 2017

(Page 1 of 2)

Trial Quality: Good

Variety: B-149N Planted: April 27 Harvested: Oct 4

Plots: 6 rows x 38 ft, 4 reps **Row Spacing:** 22 inches

Soil Info: Loam

% OM: 2.9 **pH:** 7.7 **CEC:** 12.8

Above Opt: P Opt: K High: Mn Med: B

Added N: 140 lbs Prev Crop: Wheat Rhizoc Level: Low, Quadris 2X

Cerc Control: See trts.

Problems: Alternaria leafspot

was also present

Seeding Rate: 4.5 inches Rainfall: 22.2 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment	Rate/A			Dam		Net \$//	Δ.	RW	SA	RW	/ST	T/	A	% SUC		% C	ЭP
					29-													
15	Super Tin +	8 fl oz +	0.9	i	0.9	f	\$1,134	b	9442	abc	304	abc	31.0	а	20.2	ab	95.7	ab
	*Echo (3 Applic)	3 pt																
	*Echo (4 Applic)	3 pt																
11	Super Tin +	8 fl oz +	1.0	i	1.1	ef	\$1,068	b	9058	а-е	302	abc	30.0	ab	20.1	ab	95.5	abc
	Badge (3 Applic)	3 pt																
	Badge (4 Applic)	3 pt																
9	Super Tin +	8 fl oz +	1.3	hi	1.0	ef	\$1,112	b	9284	a-d	308	ab	30.2	ab	20.3	ab	95.9	а
	Manz (3 Applic)	1.6 qt																
	Manz (4 Applic)	1.6 qt																
14	Super Tin +	8 fl oz +	1.5	hi	0.9	f	\$1,254	а	9524	ab	305	abc	31.2	а	20.2	ab	95.8	ab
	*Echo (3 Applic)	2 pt																
	*Echo (4 Applic)	2 pt																
13	*Echo	3 pt	2.0	ghi	1.2	def	\$1,274	а	9678	а	311	а	31.1	а	20.5	а	95.9	а
	(8 applic)																	
10	Super Tin +	8 fl oz +	2.5	ghi	1.1	ef	\$1,106	b	8599	de	296	bc	29.1	ab	19.7	ab	95.3	abc
	Badge (3 Applic)	2 pt																
	Badge (4 Applic)	2 pt																
12	*Echo	2 pt	3.0	ghi	1.2	def	\$1,158	b	8698	cde	293	bc	29.6	ab	19.5	b	95.5	abc
	(8 Applic)																	
2	Manzate	1.6 qt	4.5	fgh	1.3	de	\$1,078	b	8481	de	302	abc	28.1	bc	20.1	ab	95.5	abc
	(4 applic)																	
	Badge	3 pt																
	(4 applic)																	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Trt 1 and 2: Manzate - June 28th, July 7th, Aug 8th, Aug 29th; Badge - July 6th, July 29th, Aug 18th, Sept 7th. Trt 3-8, 12, 13: 8 applications - June 28th, July 6th, July 17th, July 29th, Aug 8th, Aug 18th, Aug 29th, Sept 7th. Trt 9-11, 14, 15: June 28th, July 11th, July 21st, Aug 4th, Aug 14th, Aug 29th, Sept 6th.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Bold: Results are not statistically different from top-ranking treatment in each column.

*Echo: Chlorothalonil, Chlorothalonil is not approved for sugarbeets.

Evaluate Chlorothalonil for Control of Cercospora (Cercospora beticola) Leafspot in Sugarbeets

Herford, Elkton, MI - 2017

(Page 2 of 2)

Treatment	Pato/A	% Leaf Damage				Not ¢/	Α.	D\A/G	2 ^	DΙΛ	ет	т/	۸	0/ C	ΠC	0/ C	· ID
rreatment	Nate/A	19-8	бер	29-/	Aug	Met ø/	^	IXVV.	JA.	NV	31	17	^	/0 S		/ ₀ C	JF
Cuprofix	3 lb	5.4	efg	1.3	def	\$1,097	d	8592	de	300	abc	28.7	bc	19.8	ab	95.7	ab
(8 applic)																	
Badge	3 pt	7.1	def	1.5	cd	\$1,056	b	8348	е	299	abc	27.9	bc	19.9	ab	95.5	abc
(8 applic)																	
Manzate	1.6 qt	8.0	de	1.3	def	\$1,112	b	8726	cde	297	bc	29.4	ab	19.7	ab	95.8	ab
(4 applic)																	
Badge	2 pt																
(4 applic)																	
Cuprofix	2 lb	9.5	d	1.4	de	\$1,130	b	8827	b-e	294	bc	30.1	ab	19.5	b	95.6	ab
(8 applic)																	
Badge	2 pt	10.3	d	1.6	cd	\$1,109	b	8735	cde	293	С	29.9	ab	19.4	b	95.6	ab
(8 applic)																	
AgriLife	57 fl oz	51.5	С	1.8	bc	\$907	С	7202	f	269	d	26.8	С	18.1	С	95.2	bc
(8 applic)																	
Cueva	2 qt	73.5	b	2.1	b	\$782	d	6291	g	263	d	24.0	d	17.8	С	95.0	cd
(8 applic)																	
Untreated Check		95.5	а	2.9	а	\$647	е	4724	h	235	е	20.1	е	16.2	d	94.6	d
Average		17 3		1.4		\$1.06 <i>1</i>		8388		292		28.6		19.4		95	5
LSD 5%														0.7			
CV %		12.3		18.0		6.2		5.8		2.9		4.9		2.7		0.4	
)	(8 applic) Badge (8 applic) Manzate (4 applic) Badge (4 applic) Cuprofix (8 applic) Badge (8 applic) CupriLife (8 applic) Cueva (8 applic) Untreated Check	Cuprofix (8 applic) Badge (8 applic) Manzate (4 applic) Badge (4 applic) Cuprofix (8 applic) Badge (8 applic) Cuprofix (8 applic) AgriLife (8 applic) Cueva (8 applic) Cueva (8 applic) Untreated Check	Cuprofix 3 lb 5.4 (8 applic) 3 pt 7.1 Badge 3 pt 7.1 (8 applic) 1.6 qt 8.0 Manzate 1.6 qt 8.0 (4 applic) 2 pt 9.5 Cuprofix 2 lb 9.5 (8 applic) 2 pt 10.3 AgriLife 57 fl oz 51.5 (8 applic) 2 qt 73.5 Cueva 2 qt 73.5 (8 applic) 95.5 Tage 17 0 5% 3.0	Cuprofix (8 applic) 3 lb 5.4 efg Badge (8 applic) 3 pt (8 applic) 7.1 def Manzate (4 applic) 1.6 qt (4 applic) 8.0 de Badge (4 applic) 2 pt (4 applic) 9.5 d Cuprofix (8 applic) 2 pt (8 applic) 10.3 d AgriLife (8 applic) 57 fl oz (8 applic) 51.5 c Cueva (8 applic) 2 qt (8 applic) 73.5 b Untreated Check 95.5 a a	Cuprofix 3 lb 5.4 efg 1.3 (8 applic) 3 pt 7.1 def 1.5 Manzate 1.6 qt 8.0 de 1.3 (4 applic) 2 pt 4 applic) 4 applic) Cuprofix 2 lb 9.5 d 1.4 (8 applic) 2 pt 10.3 d 1.6 (8 applic) 57 fl oz 51.5 c 1.8 (8 applic) 2 qt 73.5 b 2.1 (8 applic) 95.5 a 2.9 rage 17.3 1 55% 3.0 0	Cuprofix (8 applic) 3 lb 5.4 efg 1.3 def Badge (8 applic) 3 pt 7.1 def 1.5 cd Manzate (4 applic) 1.6 qt 8.0 de 1.3 def Badge (4 applic) 2 pt 4 de 1.4 de Cuprofix (8 applic) 2 lb 9.5 d 1.4 de Badge (8 applic) 2 pt 10.3 d 1.6 cd AgriLife (8 applic) 57 fl oz 51.5 c 1.8 bc Cueva (8 applic) 2 qt 73.5 b 2.1 b Untreated Check 95.5 a 2.9 a 17.3 1.4 de 17.3 1.4 de 17.3 1.4 de	Cuprofix (8 applic) 3 lb 5.4 efg 1.3 def \$1,097 Badge (8 applic) 3 pt (8 applic) 7.1 def 1.5 cd \$1,056 Manzate (4 applic) 1.6 qt (4 applic) 8.0 de 1.3 def \$1,112 Badge (4 applic) 2 pt (4 applic) 9.5 d 1.4 de \$1,130 Cuprofix (8 applic) 2 pt (8 applic) 10.3 d 1.6 cd \$1,109 AgriLife (8 applic) 57 fl oz (8 applic) 51.5 c 1.8 bc \$907 Cueva (8 applic) 2 qt (8 applic) 73.5 b 2.1 b \$782 Untreated Check 95.5 a 2.9 a \$647 rage (5%) 3.0 0 0.4 94.9	Treatment Rate/A 19-Sep 29-Aug 1.3 def \$1,097 b	Cuprofix (8 applic) 3 lb 5.4 efg 1.3 def \$1,097 b \$8592 Badge (8 applic) 3 pt (4 applic) 7.1 def 1.5 cd \$1,056 b 8348 Badge (4 applic) 1.6 qt (4 applic) 8.0 de 1.3 def \$1,112 b 8726 Cuprofix (8 applic) 2 pt (8 applic) 9.5 d 1.4 de \$1,130 b 8827 Badge (8 applic) 2 pt (8 applic) 10.3 d 1.6 cd \$1,109 b 8735 AgriLife (8 applic) 57 fl oz (8 applic) 51.5 c 1.8 bc \$907 c 7202 Cueva (8 applic) 2 qt (73.5 b) 2.1 b) \$782 d 6291 Untreated Check 95.5 a 2.9 a \$647 e 4724 rage (5%) 3.0 0.4 94.9 692 692	Treatment Rate/A 19-Sep 29-Aug Net \$/A RWSA	Treatment Trea	Teatment Teatment	Teatment Rate/A 19-sep 29-Aug Net \$/A RWSA R	Teatment Teatment	Treatment Rate/A 19-Sep 29-Aug Net \$/A RWSA Cuprofix (8 applic) S.4 efg 1.3 def 8.0 def (4 applic) Cuprofix (8 applic) Sadge (4 applic) Cuprofix (8 applic) Sadge (4 applic) Sadge (4 applic) Sadge (4 applic) Sadge (4 applic) Sadge (5 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (6 applic) Sadge (7 applic) Sadge (8 ap	Cuprofix (8 applic) Sep 29-Aug Sep 29-Aug Sep 29-Aug Sep	
Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Trt 1, 2: Manzate - June 28th, July 7th, Aug 8th, Aug 29th; Badge - July 6th, July 29th, Aug 18th, Sept 7th. Trt 3-8, 12,13: 8 applications - June 28th, July 6th, July 17th, July 29th, Aug 8th, Aug 18th, Aug 29th, Sept 7th. Trt 9-11, 14, 15: June 28th, July 11th, July 21st, Aug 4th, Aug 14th, Aug 29th, Sept 6th.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Bold: Results are not statistically different from top-ranking treatment in each column.

Comments: Controlling leafspot in Michigan is much more difficult than it was a few years ago. Cercospora resistance to fungicides, and a new leafspot disease, alternaria alternata, which has become a significant problem in recent years, makes it difficult to control leafspot diseases in sugarbeets. Fungicides are also developing resistance to Alternaria. The objective of this trial was to determine the effectiveness of chlorothalonil (Echo) for controlling Cercospora and Alternaria leafspot. Chlorothalonil provided very good control of leafspot which was comprised of about 70% Cercospora and 30% Alternaria. Super Tin tank mix with chlorothanil, Manzate, and Badge also provided good leafspot control. Manzate and coppers alone gave only fair disease control. None of the treatments caused sugarbeets phytotoxicity.

Control of Cercospora Leafspot Utilizing Fungicides Approved for use in Canada

Herford, Elkton, MI - 2017

(Page 1 of 2)

Trial Quality: Good Variety: B-149N Planted: April 28

Harvested: Oct 3

Plots: 6 rows X 38 ft, 6 reps

Row Spacing: 22 inches

Soil Info: Loam % OM: 2.9 pH

% OM: 2.9 pH: 7.7 CEC: 12.8 Above Opt: P Opt: K High: Mn Med: B

Added N: 140 lbs Prev Crop: Wheat Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.5 inches Rainfall: 22.4 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment	Rate/A			Dama 21- <i>A</i>		Net \$	/A	RW	SA	RW	ST	T/	A	% S	UC
9	Inspire + Tilt + Manzate Pro Stick (3 applications)	7 fl oz + 6.5 fl oz + 2 lb	1.6	g	0.4	b	\$1,183	b	9564	а	307	а	31.1	а	20.4	а
	Manzate Pro Stick (3 applications)	2 lbs														
2	Proline + Preference + Manzate Pro Stick (3 applications) Manzate Pro Stick	5.7 fl oz + .125 % + 2 lb	1.8	g	0.6	b	\$1,154	b	9292	abc	306	а	30.4	ab	20.2	а
	(3 applications)	2 10														
3	Minerva + Manzate Pro Stick (3 applications) Manzate Pro Stick	13 fl oz + 2 lb 2 lb	2.3	fg	0.7	b	\$1,099	bcd	8844	bcd	294	ab	30.1	abc	19.4	ab
	(3 applications)	2 10														
10	Manzate Pro Stick (8 applications)	2 lb	2.5	efg	0.6	b	\$1,269	а	9325	ab	305	а	30.6	ab	20.2	а
1	Inspire + Manzate Pro Stick (3 applications)	7 fl oz + 2 lb	2.5	efg	0.7	b	\$1,112	bcd	8919	bcd	292	ab	30.6	ab	19.4	ab
	Manzate Pro Stick (3 applications)	2 lb														
6	Priaxor + Manzate Pro Stick (3 applications)	8 fl oz + 2 lb	3.2	def	0.9	b	\$1,056	cd	8686	cd	302	а	28.8	cde	20.1	а
	Manzate Pro Stick (3 applications)	2 lb														
8	Topsin + Manzate Pro Stick (3 applications)	10.5 fl oz + 2 lb	3.3	def	8.0	b	\$1,105	bcd	8645	d	297	ab	29.2	bcd	19.7	ab
	Manzate Pro Stick (3 applications)	2 lb														

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: Trts 1-9: A - June 28th, B - July 14th, C - July 24th, D - Aug 9th, E - Aug 18th, F - Sept 6th.

Trts 10-12: A - June 28th, B - July 7th, C - July 17th, D - July 28th, E - Aug 7th, F - Aug 16th,

G - Aug 26th, H - Sept 6th.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of Cercospora Leafspot Utilizing Fungicides Approved for use in Canada

Herford, Elkton, MI - 2017

(Page 2 of 2)

No.	Treatment	Rate/A	% Ce		Dama		Net \$/A	RWSA	RWST	T/A	% SUC
4	Caramba + Manzate Pro Stick (3 applications)	14 fl oz + 2 lb	12-S 3.5		21-A 1.0	ug b	\$1,058 cd	8546 d	292 ab	29.3 bcd	19.5 ab
	Manzate Pro Stick (3 applications)	2 lb									
5	Tilt + Manzate Pro Stick (3 applications)	6.5 fl oz + 2 lb	3.8	d	1.1	b	\$1,065 cd	8512 d	295 ab	28.8 cde	19.6 ab
	Manzate Pro Stick (3 applications)	2 lb									
11	Kocide 3000 (8 applications)	5.6 lb	4.2	cd	1.2	b	\$1,130 bc	8316 d	287 ab	29.0 cde	19.2 ab
7	Headline + Manzate Pro Stick (3 applications)	10 fl oz + 2 lb	5.0	O	1.6	b	\$1,029 d	8466 d	299 a	28.3 de	19.8 a
	Manzate Pro Stick (3 applications)	2 lb									
12	Cueva (Liquid Copper) (8 applications)	3 qt	7.8	b	2.1	b	\$1,046 cd	7699 e	278 b	27.7 е	18.6 b
13	Untreated Check		75.0	а	21.8	а	\$845 e	6163 f	238 c	25.9 f	16.3 c
Av	erage		8.8	9	2.6	6	\$1,089	8537	292	29.2	19.4
	D 5%		1.0		1.6		78.6	573.4	17.2	1.3	1.0
CV	′ %		7.	7	43.	7	5.0	4.7	4.1	3.1	3.6

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: Trts 1-9: A - June 28th, B - July 14th, C - July 24th, D - Aug 9th, E - Aug 18th, F - Sept 6th.

Trts 10-13: A - June 28th, B - July 7th, C - July 17th, D - July 28th, E - Aug 7th, F - Aug 16th,

G - Aug 26th, H - Sept 6th.

Comments: Fungicides approved for use in Ontario, Canada, were evaluated for control of *Cercospora beticola* (leafspot) in this small plot replicated trial. Inspire (not XT) + Tilt + Manzate (applied 3 times) with Manzate as an in-between treatment provided very good Cercospora control. Other triazole programs based on Proline and Minerva also provided good leafspot control as did Manzate applied 8 times. Priaxor, Topsin, Caramba, Tilt programs and 8 applications of Kocide 3000 were somewhat less effective. Headline and Cueva provided suppression of leafspots. The disease level was very high. *Alternaria alternata* (leafspot) was also present.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of Cercospora Leafspot with Cueva (Liquid Copper Fungicide), Cuprofix, Badge and Manzate.

MICHIGAN SUGAR Herford, Elkton, MI - 2017

Soil Info: Loam

Trial Quality: Fair - Good

Variety: B-149N Planted: April 27 Harvested: Oct 4

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Above Opt: P Opt: K High: Mn Med: B

% OM: 2.9 **pH**: 7.7 **CEC**: 12.8

Added N: 140 lbs

Prev Crop: Wheat

Rhizoc Level: Low Cerc Control: See trts.

Problems: None

Seeding Rate: 4.5 inches Rainfall: 22.2 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment	Rate/A			Damag		Net \$/	Δ	RWS	SΔ	RW	ST	T/.	Δ	% SI	ıc	% C.	.IP
NO.	Troduitont	rtato// t	19 - S	ер	29-A	ug	1101 ψ/	•	IXIIC	<i>"</i> .					/0 0		/0 0	
3	Cuprofix (8 Applic)	3 lbs	5.4	d	1.9	d	\$1,057	а	8387	а	292	а	28.8	ab	19.3	а	95.7	а
1	Manz (4 Applic)	1.6 qt	8.0	d	2.4	d	\$1,029	а	8103	а	294	а	27.7	abc	19.5	а	95.8	а
	Badge (4 Applic)	2 qt																
2	Cuprofix (8 Applic)	2 lbs	9.5	d	2.9	d	\$1,111	а	8815	а	293	а	30.2	а	19.5	а	95.6	а
4	Badge (8 Applic)	2 pt	10.3	d	3.0	d	\$1,126	а	8741	а	293	а	29.9	а	19.4	а	95.6	а
6	Cueva (8 Applic)	4 qt	38.5	С	13.3	С	\$863	b	6959	b	275	b	25.3	bcd	18.4	b	95.4	ab
7	Double Nickel +	2 qt +	69.0	b	23.8	р	\$763	b	6814	р	257	O	26.6	abc	17.5	С	94.7	С
	Cueva (8 Applic)	1 qt																
5	Cueva (8 Applic)	2 qt	73.5	b	25.8	b	\$772	b	6284	bc	263	С	24.0	cd	17.8	С	95.0	bc
8	Untreated Check		95.5	а	36.0	а	\$706	b	5206	С	235	d	22.1	d	16.1	d	94.6	С
Δ			20	7	40	<u></u>	Ф ООО		744	4	07	-	200	0	40	F	05	$\overline{}$
AV	erage		38.	<u>′ </u>	13.	0	\$928		741	4	27	0	26	.8	18.	ວ	95.	3
LS	D 5%		5.6	3	3.6	3	146.8	3	1083	5.2	10.	6	4.	1	0.7	7	0.4	1
CV	%		9.9	9	17.	9	10.8		9.9		2.6	6	10	.3	2.4	1	0.3	3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Trt 1: Manzate - June 28th, July 17th, Aug 8th, Aug 29th; Badge - July 6th, July 29th, Aug 18th, Sept 7th.

Trt 2 - 7: June 28th, July 6th, July 17th, July 29th, Aug 8th, Aug 18th, Aug 29th, Sept 7th.

Comments: The disease level was very high. Cuprofix at 3 lb/A gave the best Cercospora beticola (leafspot) control in this trial. Badge alone and alternating Manzate with Badge provided effective control. Cueva did not provide adequate leafspot control, however, it appeared that Double Nickel (added to Cueva) improved control marginally. All of the treatments were applied 8 times. Alternaria alternata (leafspot) was present in the trial. None of the fungicides caused sugarbeet injury.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Sodium, Potassium and Ammonium Bicarbonates for Cercospora Leafspot Control

MICHIGAN SUGAR Herford, Elkton, MI - 2017

Trial Quality: Good **Variety:** B-149N **Planted:** April 27

Harvested: Oct 4
Plots: 6 rows X 38 ft, 4 reps
Row Spacing: 22 inches

Soil Info: Loam

% OM: 2.9 **pH**: 7.7 **CEC**: 12.8

Above Opt: P Opt: K High: Mn Med: B

Added N: 140 lbs
Prev Crop: Wheat

Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.5 inches

Rainfall: 22.2 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment	Rate/A	% Le	af	Dama	ige	Net \$/	^	RWSA	RW	ет	Т/	Λ	% SI	ıc	% C	ID
NO.	Treatment	Nate/A	19 - S	ер	15-A	lug	NGL Ψ/.	^	RWSA	IXVV	31	17.	^	/0 3		/0 C	JF
9	Super Tin + Manzate	8 fl oz +	1.3	d	0.2	d	\$1,304	а	9823 a	308	а	31.9	а	20.3	а	95.9	а
	(3 applications)	1.6 qt															
	Manzate (4 Applications)	1.6 qt															
1	Manzate (4 Applications)	1.6 qt	8.0	С	0.3	d	\$1,230	а	8717 b	297	а	29.4	abc	19.7	а	95.8	ab
	Badge (4 Applications)	2 pt															
2	Cuprofix (8 Applications)	2 lb	9.5	С	0.4	d	\$1,242	а	8875 b	293	ab	30.4	ab	19.4	ab	95.6	a-d
3	Badge (8 Applications)	2 pt	10.3	С	0.6	d	\$1,214	а	8741 b	293	ab	29.9	ab	19.4	ab	95.6	abc
6	Potassium Biocarbonate +	5 lb +	11.0	С	0.4	d	\$1,070	b	7737 c	281	b	27.6	bcd	18.8	b	95.4	a-d
	Badge (8 Applications)	2 pt															
7	Ammonium Biocarbonate	5 lb	81.8	b	2.3	bc	\$921	С	6340 d	242	cd	26.1	cd	16.5	С	94.9	de
	(8 Applications)																
8	Sodium Biocarbonate	5 lb	83.0	b	1.0	cd	\$894	С	6161 d	251	С	24.5	d	17.0	С	95.0	cde
	(8 Applications)																
5	Potassium Biocarbonate	5 lb	84.5	b	3.3	b	\$877	С	6046 d	245	cd	24.8	d	16.7	С	95.0	cde
	(8 Applications)																
4	Potassium Biocarbonate	3 lb	87.8	b	3.4	b	\$843	cd	5820 de	241	cd	24.1	d	16.4	С	95.1	b-e
	(8 Applications)																
10	Untreated Check		95.5	а	5.8	а	\$732	d	4914 e	235	d	20.9	е	16.1	С	94.6	е
			47	2	4 7	,	¢4.00	2	7047	- 00	٠.	07	0	40	0	0.5	2
	erage		47.		1.7		\$1,03		7317	26		27		18.		95	
	D 5%		5.7		1.5		136.0)	912.7	13		3.		0.8		0.	
C/V	/ %		8.3)	59.5)	9.0		8.6	3.	ວ	8.	I	3.	l	0.	O

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Trt 1: Manzate - June 28th, July 17th, Aug 8th, Aug 29th; Badge - July 6th, July 29th, Aug 18th, Sept 7th.

Trt 2 - 8: June 28th, July 6th, July 17th, July 29th, Aug 8th, Aug 18th, Aug 28th, Sept 7th.

Trt 9: Super Tin + Manzate - June 28th, July 21st and Aug 14th; Manzate - July 11th, Aug 4th, Aug 29th, Sept 6th.

Comments: Sodium, Potassium and Ammonium Bicarbonates have shown promise for controlling *Cercospora beticola* (leafspot) in laboratory studies at MSU. These bicarbonates were applied at 5 lb/A sequentially on a 7-10 day schedule for a total of 8 applications. Potassium bicarbonate was also tank mixed with Badge in this trial. The bicarbonate treatments gave "only" suppression of leafspot in this trial. Comparison treatments of Manzate and Coppers gave effective control and Super Tin + Manzate provided excellent leafspot control. The disease level was very high.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Effect of the Chemosensitization Agent Octyl Gallate on the Efficacy of Minerva for Cercospora Leafspot Control Herford, Elkton, MI - 2017 (Page 1 of 2)

Rhizoc Level: Low

Problems: None

Cerc Control: See trts.

Rainfall: 22.2 inches

Seeding Rate: 4.5 inches

Trial Quality: Good **Variety:** B-149N **Planted:** April 28

Harvested: Oct 3
Plots: 6 rows X 38 ft, 6 reps

Row Spacing: 22 inches

Soil Info: Loam

% OM: 2.9 pH: 7.7 CEC: 12.8 Above Opt: P Opt: K

High: Mn Med: B Added N: 140 lbs

Prev Crop: Wheat

ID 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gp

Ap	pplication: JD 3520 tractor mo	ounted plot sprayer	, compre	ess	ed air	·, 10	0 psi, 25 gp	а				
No.	Treatment	Rate/A	% Lea		amag 7-A	_	Net \$/A	RWSA	RWST	T/A	% SU	С
2	Minerva + Manzate	13 fl oz + 1.6 qt	3.6	d	0.6	b	\$1,309 a	9210 a	283 a	32.6 a	18.8	а
	3 applications (A,C & E)											
	Manzate	1.6 qt										
	2 applications (B & D)											
	Badge SC (F)	3 pt										
7	Minerva + Octyl Gallate	13 fl oz + 290 g	18.6	cd	0.3	b	\$1,191 b	8486 b	269 ab	31.5 a	18.1 a	ıb
	3 applications (A, C & E)											
	Manzate	1.6 qt										
	2 applications (B & D)											
	Badge SC (F)	3 pt										
6	Minerva + Octyl Gallate	13 fl oz + 145 g	21.2	cd	8.0	b	\$1,180 b	8298 b	267 abc	31.0 a	18.0 a	ıb
	3 applications (A,C & E)											
	Manzate	1.6 qt										
	2 applications (B & D)											
	Badge SC (F)	3 pt										
3	Minerva + Octyl Gallate	13 fl oz + 2.9 g	22.6 b	cd	0.7	b	\$1,118 bc	7784 b	256 bc	30.5 ab	17.2 I	b
	3 applications (A,C & E)											
	Manzate	1.6 qt										
	2 applications (B & D)											
	Badge SC (F)	3 pt										
4	Minerva + Octyl Gallate	13 fl oz + 14.5 g	24.2 k	bc	0.6	b	\$1,122 bc	7816 b	252 bc	31.1 a	16.9 I	b
	3 applications (A,C & E)											
	Manzate Max	1.6 qt										
	2 applications (B & D)											
	Badge SC (F)	3 pt										

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: A - June 29th, B - July 17th, C - July 28th, D - Aug 14th, E - Aug 24th, F - Sept 6th.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Effect of the Chemosensitization Agent Octyl Gallate on the Efficacy of Minerva for Cercospora Leafspot Control Herford, Elkton, MI - 2017 (Page 2 of 2)

No.	Treatment	Rate/A	% Leaf	Damage	Net \$/A	RWSA	RWST	T/A	% SUC
	reatment	Rate/A	12-Sep	7-Aug	Νοι ψ/Α	KWOA	KWOT	177	/0 000
5	Minerva + Octyl Gallate	13 fl oz + 29 g	24.8 bc	0.4 b	\$1,187 b	8250 b	267 abc	30.9 a	17.9 ab
	3 applications (A,C & E)								
	Manzate Max	1.6 qt							
	2 applications (B & D)								
	Badge SC (F)	3 pt							
1	Minerva	13 fl oz	41.2 b	0.5 b	\$1,023 c	7142 c	249 с	28.7 b	16.9 b
	3 applications (A,C & E)								
	Manzate Max	1.6 qt							
	2 applications (B & D)								
	Badge SC (F)	2 pt							
8	Untreated Check		94.0 a	7.9 a	\$909 d	5877 d	227 d	26.0 c	15.6 с
۸۰	vorage		31.3	1.5	\$1,130	7858	259	30.3	17.4
	verage								
-	SD 5%		18.1	1.1	98.4	636.6	16.8	1.9	1.1
C/	<i>J</i> %		44.6	58.3	6.7	6.3	5.0	4.8	4.7

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Spray Dates: A - June 29th, B - July 17th, C - July 28th, D - Aug 14th, E - Aug 24th, F - Sept 6th.

Comments: In this trial a Minerva spray program was compared to a Minerva + Octyl Gallate spray program.

Octyl Gallate is a chemosensitization agent which has been shown to improve the efficacy of fungicides for control of Cercospora beticola (NDSU). A wide range of Octyl Gallate rates were evaluated in this Cercospora leafspot trial.

Minerva + Octyl Gallate treatments provided better leafspot control than Minerva without a tank mix partner (Trt. 1).

Higher rates of Octyl Gallate gave better results than the lower rates. Yield, quality and grower income were also improved with the addition of Octyl Gallate. Minerva tank mixed with Manzate, was clearly superior to Minerva + Octyl Gallate. Additional research is planned for 2018.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of Alternaria and Cercospora Leafspot with Registered and Experimental Fungicides

Answer Plot, Bach, MI - 2017 MICHIGAN SUGAR

(Page 1 of 4)

Trial Quality: Good Variety: C-RR059 Planted: May 9

Harvested: Oct 31 Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Soil Info: Loam **%OM**: 3.2 **pH**: 7.7 **CEC**: 14.0 Above Opt: P, K

Added N: 140 lbs Prev Crop: Corn

Cerc Control: See trts. Problems: None High: Mn Med: B Seeding Rate: 4.5 inches

Rainfall: 19.1 inches

Rhizoc Level: Low

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

		nor mountou piet opi													0/	
No	Treatment	Rate /A	% L		Dama 17-		Net \$	/A	RWS	A	RW	ST	T/	Α	% SU	
31	Echo 720	3 pt	4.7	r	2.0	0	\$1,756	а	13622	ab	319	ab	42.8	ab	20.9	ab
	(8 applic) - 10 days															
7	Super Tin + Topsin +	8 fl oz + 20 fl oz +	8.0	qr	4.7	mno	\$1,710	ab	13642	ab	320	ab	42.7	abc	21.0	ab
	Manzate	1.6 qt														
	(3 applic) - 14 days															
	Badge	2 pt														
	(3 applic) - 10 days															
	Badge - 10 days	3 pt														
30	Echo 720	2 pt	9.7	pq	6.3	l-o	\$1,704	ab	13111	а-е	320	ab	41.0	a-d	21.0	ab
ш	(8 applic) - 10 days															
23	Manzate + Badge	1.6 qt + 2 pt	12.3	op	9.3	j-m	\$1,667	abc	13523	abc	317	ab	42.7	abc	20.7	ab
	(8 applic) - 10 days															
3	Super Tin + Manzate	8 fl oz + 1.6 qt	12.7	op	8.3	k-n	\$1,699	ab	13400	a-d	324	а	41.4	a-d	21.2	а
	(3 applic) - 14 days															
	Badge	2 pt														
-	(3 applic) - 10 days															
	Badge - 10 days	3 pt														
26	Badge	3 pt	14.7	0	11.3	ijk	\$1,572	b-g	12470	b-h	310	abc	40.3	а-е	20.3	а-е
	(8 applic) - 10 days															
15																
	Super Tin + Topsin +	8 fl oz + 20 fl oz +	15.0	no	3.7	no	\$1,751	а	13911	а	316	ab	44.1	а	20.6	abc
	Badge	8 fl oz + 20 fl oz + 2 pt	15.0	no	3.7	no	\$1,751	а	13911	а	316	ab	44.1	а	20.6	abc
	Badge (3 applic) - 14 days	2 pt	15.0	no	3.7	no	\$1,751	а	13911	а	316	ab	44.1	а	20.6	abc
	Badge (3 applic) - 14 days Badge		15.0	no	3.7	no	\$1,751	а	13911	а	316	ab	44.1	а	20.6	abc
	Badge (3 applic) - 14 days Badge (3 applic) - 10 days	2 pt 2 pt	15.0	no	3.7	no	\$1,751	a	13911	а	316	ab	44.1	а	20.6	abc
11	Badge (3 applic) - 14 days Badge (3 applic) - 10 days Badge - 10 days	2 pt 2 pt 3 pt					·									
11	Badge (3 applic) - 14 days Badge (3 applic) - 10 days Badge - 10 days Super Tin + Badge	2 pt 2 pt	15.7 ו				\$1,751 \$1,683						44.1			
11	Badge (3 applic) - 14 days Badge (3 applic) - 10 days Badge - 10 days Super Tin + Badge (3 applic) - 14 days	2 pt 2 pt 3 pt 8 fl oz + 2 pt					·									
11	Badge (3 applic) - 14 days Badge (3 applic) - 10 days Badge - 10 days Super Tin + Badge (3 applic) - 14 days Badge	2 pt 2 pt 3 pt					·									
11	Badge (3 applic) - 14 days Badge (3 applic) - 10 days Badge - 10 days Super Tin + Badge (3 applic) - 14 days Badge (3 applic) - 10 days	2 pt 2 pt 3 pt 8 fl oz + 2 pt 2 pt					·									
	Badge (3 applic) - 14 days Badge (3 applic) - 10 days Badge - 10 days Super Tin + Badge (3 applic) - 14 days Badge	2 pt 2 pt 3 pt 8 fl oz + 2 pt 2 pt 3 pt		mno	11.0	i-l	\$1,683	abc	13233	а-е	319	ab		a-d	20.9	ab
11	Badge (3 applic) - 14 days Badge (3 applic) - 10 days Badge - 10 days Super Tin + Badge (3 applic) - 14 days Badge (3 applic) - 10 days Badge Badge - 10 days Badge - 10 days	2 pt 2 pt 3 pt 8 fl oz + 2 pt 2 pt	15.7 ι	mno	11.0	i-l	\$1,683	abc	13233	а-е	319	ab	41.6	a-d	20.9	ab
	Badge (3 applic) - 14 days Badge (3 applic) - 10 days Badge - 10 days Super Tin + Badge (3 applic) - 14 days Badge (3 applic) - 10 days Badge (3 applic) - 10 days	2 pt 2 pt 3 pt 8 fl oz + 2 pt 2 pt 3 pt	15.7 ι	mno I-o	11.0	i-l h-k	\$1,683	abc	13233 12611	a-e	319	ab	41.6	a-d	20.9	ab

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of Alternaria and Cercospora Leafspot with Registered and Experimental Fungicides

Answer Plot, Bach, MI - 2017

(Page 2 of 4)

No.	Treatment	Rate / A	% Le		Damage 17-Aug	Net \$	/A	RWSA	RWS	Т	T/A	A	% SU	
14	Topsin + Badge	20 fl oz + 2 pt	20.0		14.0 hij	\$1,671	abc	13144 a-e	315 a	b 4	41.8	a-d		
	(3 applic) - 14 days													
	Badge	2 pt												
	(3 applic) - 10 days	01	l											
40	Badge - 10 days	3 pt	20.7	•	40.7 k.l.	Φ4 F04	le £	40040 h a	207 -		14.0	a al	00.0	- £
16	Minerva Duo (3 applic) - 17 days	16 fl oz	20.7	ı	12.7 h-k	\$1,581	D-T	12613 b-g	307 a	-e 4	¥1.Z	a-a	20.3	а-т
	Badge	2 pt	1											
	(3 applic) - 10 days	- p.												
8	Minerva Duo	16 fl oz	20.7	ı	16.0 ghi	\$1,536	c-h	12309 d-h	317 a	b 3	38.9	b-g	20.8	ab
	(3 applic) - 17 days													
	Manzate Max	1.6 qt												
	(3 applic) - 10 days													
12	Priaxor + Badge	8 fl oz + 2 pt	26.3	k	17.3 fgh	\$1,417	g-k	11634 f-i	301 b	-f 3	38.7	b-g	20.0	a-g
	(3 applic) - 14 days													
	Badge	2 pt												
	(3 applic) - 10 days													
	Badge - 10 days	3 pt			40.0		4.							
4	Priaxor + Manzate	8 fl oz + 1.6 qt	30.7	j	16.0 ghi	\$1,433	f-j	11792 f-i	309 a	-d 3	38.3	c-g	20.3	а-е
	(3 applic) - 14 days	0 1	ł											
	Badge	2 pt												
	(3 applic) - 10 days Badge - 10 days	3 pt												
22	Super Tin + Sodium	8 fl oz + 5 lb	32.3	İ	14.7 hi	\$1 564	h-a	12120 e-i	310 a	ac 3	39 1	h-a	20.5	ahc
	Bicarbonate	01102 1 315	02.0	J	11.7 111	Ψ1,004	2 9	12120 01	5 10 a			J 9	20.0	abc
	(3 applic) - 14 days													
	Sodium Bicarbonate	5 lb	1											
	(3 applic) - 10 days													
	Badge - 10 days	3 pt												
13	Headline + Badge	10 fl oz + 2 pt	37.0	i	22.0 def	\$1,446	e-j	11829 f-i	308 a	- d 3	38.4	b-g	20.3	а-е
	(3 applic) - 14 days													
	Badge	2 pt												
	(3 applic) - 10 days													
	Manzate Max	1.6 qt												
	Badge - 10 days	3 pt			010	*				_				
5	Headline + Manzate	10 fl oz + 1.6 qt	37.0	i	21.3 def	\$1,399	h-k	11514 f-j	306 a	- e 3	37.7	d-g	20.1	a-g
	(3 applic) - 14 days													
	Badge	2 pt												
	(3 applic) - 10 days	3 nt												
	Badge - 10 days	3 pt												

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of Alternaria and Cercospora Leafspot with Registered and Experimental Fungicides

Answer Plot, Bach, MI - 2017

(Page 3 of 4)

No.	Treatment	Rate / A		Damage	Net \$/A	RWSA	RWST	T/A	% SUC
1	Inspire + Manzate	7 fl oz + 1.6 qt			\$1,506 d-i	12108 e-i	312 abc	38.8 b-g	20.6 abc
	(3 applic) - 17 days								
	Badge	2 pt							
	(2 applic) - 10 days								
	Badge - 10 days	3 pt							
9	Inspire + Badge	7 fl oz + 2 pt	42.0 gh	25.3 d	\$1,458 e-j	11688 f-i	311 abc	37.7 d-g	20.4 a-d
	(3 applic) - 17 days								
	Badge	2 pt							
	(2 applic) - 10 days	2 = 4							
6	Badge - 10 days	3 pt	44.0 0	20.0 efg	¢1 564 h a	12381 c-h	212 abo	30.6 b.f	20.6 abc
٥	Topsin + Manzate (3 applic) - 14 days	20 fl oz + 1.6 qt	44.0 g	Zu.u eig	\$1,564 b-g	12301 C-N	SIS ADC	J9.U D-T	∠u.o abc
	Badge	2 pt							
	(3 applic) - 10 days	2 ρι							
	Badge - 10 days	3 pt							
2	Minerva + Manzate	13 fl oz + 1.6 qt	44.3 g	24.0 de	\$1,239 lmn	10172 kl	283 f-i	35.9 e-h	18.9 g-j
	(3 applic) - 17 days		J						0,7
	Badge	2 pt							
	(2 applic) - 10 days								
	Badge - 10 days	3 pt							
10	Minerva + Badge	13 fl oz + 2 pt	46.0 fg	22.7 de	\$1,366 i-l	11011 i-l	305 а-е	36.2 e-h	20.2 a-g
	(3 applic) - 17 days								
	Badge	2 pt							
	(2 applic) - 10 days								
	Badge - 10 days	3 pt		10.0				20.4	
21	Super Tin + Ammonium	8 fl oz + 5 lb	49.3 f	13.3 h-k	\$1,471 d-i	11419 g-j	292 c-g	39.1 b-g	19.3 c-h
	Biocarbonate								
	(3 applic) - 14 days	5 lb							
	Ammonium Biocarbonate	O ID							
	(3 applic) - 10 days								
	Badge - 10 days	3 pt							
20	Super Tin + Potassium	8 fl oz + 5 lb	61.7 e	24.7 de	\$1,449 e-j	11272 h-k	298 b-f	38.0 d-a	19.8 b-g
[_ [Biocarbonate	0.1.02 - 0.10]		ţ., o o j	· · = · = · · · · ·		~ 9	
	(3 applic) - 14 days								
	Potassium	5 lb							
	Biocarbonate								
	(3 applic) - 10 days								
	Badge - 10 days	3 pt							

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of Alternaria and Cercospora Leafspot with Registered and Experimental Fungicides

Answer Plot, Bach, MI - 2017

(Page 4 of 4)

No.	Treatment	Rate / A	% Le 4-Oc		Dama 17-A		Net \$	/A	RWS	SA	RW	ST	T/#	4	% SU	
19	Inspire + Sodium Biocarbonate (3 applic) - 17 days	7 fl oz + 5 lb	75.7		36.7	_	\$1,249	lmn	9947	I	285	e-i	35.0	ghi	19.0	f-j
	Sodium Bicarbonate (2 applic) - 10 days	5 lb														
	Badge - 10 days	3 pt														
17	Inspire + Potassium Biocarbonate (3 applic) - 17 days	7 fl oz + 5 lb	81.7	С	36.0	С	\$1,312	jkl	10419	jkl	287	d-h	36.3	e-h	19.1	d-i
	Potassium Biocarbonate (2 applic) - 10 days	5 lb														
	Badge - 10 days	3 pt														
18	Inspire + Ammonium Biocarbonate (3 applic) - 17 days	7 fl oz + 5 lb	85.0	С	37.3	С	\$1,279	klm	10168	kl	287	d-h	35.5	fgh	19.0	e-j
	Ammonium Biocarbonate (2 applic) - 10 days	5 lb														
	Badge - 10 days	3 pt														
27	Potassium Biocarbonate (8 applic) - 10 days	5 lb	91.7	b	45.0	b	\$1,074	0	8280	m	266	ij	31.1	ij	17.8	j
28	Ammonium Biocarbonate (8 applic) - 10 days	5 lb	94.0	b	43.3	b	\$1,118	no	8612	m	268	hij	32.1	hij	17.9	ij
29	Sodium Bicarbonate (8 applic) - 10 days	5 lb	95.3	b	40.7	bc	\$1,156	mno	8903	m	273	g-j	32.6	hij	18.2	hij
32	Untreated Check		100.0	а	56.7	а	\$1,069	0	8087	m	263	j	30.7	j	17.9	ij
Ave	erage		40.7	•	20.	7	\$1,47	2	1167	75	30	2	38.	5	20.	0
	D 5%		4.1		4.4		134.3		1015		18.		3.7		1.1	
CV			6.2		12.		5.6		5.3	,	3.7	7	5.8	3	3.4	ļ

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

All Treatments were started on June 30th.

Comments: Alternaria leafspot, *Alternaria alternata*, has become a significant problem in recent years. In a trial near Gagetown in 2016, the Alternaria infection was significant. In 2017, we conducted an Alternaria leafspot trial in the same field using C-RR059, a susceptible variety. Alternaria infected sugarbeets earlier in the year than did *Cercospora beticola*, however, Cercospora predominated in the late summer. Protectant fungicides provided better control of Alternaria than the triazoles and strobilurins. It was interesting that the strobilurins gave better control of the disease than did the triazoles (the opposite of Cercospora control). Chlorothalonil (an unapproved fungicide) provided very good control of Alternaria in this trial. Super Tin tank mixed with Manzate, Badge, or Topsin also gave good control. Manzate and Badge alone on a 10 day schedule gave adequate control. Bicarbonates have shown some promise for controlling Alternaria and Cercospora in laboratory studies. Sodium, potassium and ammonium bicarbonate treatments provided control early but were overwhelmed by the end of the season. Further work will be conducted using sodium bicarbonate (baking soda), which is very inexpensive, as a tank mix partner. Research at MSU shows that Cercospora and Alternaria have developed resistance to several fungicides and partial resistance to others.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Influence of Water Volume on the Effectiveness of Fungicides for Controlling Cercospora Leafspot Herford, Elkton, MI - 2017

Trial Quality: Good Soil Info: Loam Rhizoc Level: Low, Quadris 2X

Variety: B-149N

**Planted: April 27

**OM: 2.9 pH: 7.7 CEC: 12.8

**Above Opt: P Opt: K

Problems: None

Harvested: Oct 3High: Mn Med: BSeeding Rate: 4.5 inchesPlots: 6 rows X 38 ft, 6 repsAdded N: 140 lbsRainfall: 22.2 inches

Row Spacing: 22 inches Prev Crop: Wheat

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

			% Le						%		
No.	Treatment	Rate/A	Dama		Net \$/A	RWSA	RWST	T/A	SUC	% C.	JP
3	36 GPA		12-Se		\$1,312 a	10235	307 0	33 3 2		95.4	
٦	Minerva + Manzate	13 fl oz + 1.6 qt	1.9	٠	⊅1,312 а	10233 a	301 a	33.3 a	20.4 a	95.4	a
	Super Tin + Manzate	8 fl oz + 1.6 qt									
	Proline + Preference +	5.7 fl oz + .125 % +									
	Manzate	1.6 qt									
	Super Tin + Manzate	8 fl oz + 1.6 qt									
	Inspire + Manzate	7 fl oz + 1.6 qt									
	Badge	2 pt									
2	25 GPA	_ p.	4.2	С	\$1,214 b	9530 b	302 a	31.6 ab	20.2 a	95.3	а
	Minerva + Manzate	13 fl oz + 1.6 qt			, ,						
	Super Tin + Manzate	8 fl oz + 1.6 qt									
	Proline + Preference +	5.7 fl oz + .125 % +									
	Manzate	1.6 qt									
	Super Tin + Manzate	8 fl oz + 1.6 qt									
	Inspire + Manzate	7 fl oz + 1.6 qt									
	Badge SC	2 pt									
1	<u>12.5 GPA</u>		9.2	b	\$1,107 c	8766 c	291 b	30.1 b	19.5 b	95.1	ab
	Minerva + Manzate	13 fl oz + 1.6 qt									
	Super Tin + Manzate	8 fl oz + 1.6 qt									
	Proline + Preference +	5.7 fl oz + .125 % +									
	Manzate	1.6 qt									
	Super Tin + Manzate	8 fl oz + 1.6 qt									
	Inspire + Manzate	7 fl oz + 1.6 qt									
	Badge SC	2 pt	0 = 0		004=		2.1.1		10 =		
4	Untreated Check		95.0	а	\$917 d	6557 d	244 c	26.9 c	16.7 c	94.7	b
Av	erage		27.6	3	\$1,137	8772	286	30.5	19.2	95.1	\neg
	D 5%		3.4		77.8	556.1	8.5	1.9	0.5	0.5	
	1 %		10.0)	5.6	5.2	2.4	5.0	2.1	0.4	

CV % 10.0 5.6 5.2 2.4 5.0 2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Spray water volumes of 12.5, 25 and 35 gpa were utilized in this small plot Cercospora beticola trial. Higher water volumes clearly provided better disease control, yield, quality and grower income. Leaf damage from Cercospora was 1.9%, 4.2% and 9.2%, with 36, 25 and 12.5 gpa, respectively. The disease pressure was very high.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Bold: Results are not statistically different from top-ranking treatment in each column.

Spray Dates: A - June 29th, B - July 17th, C - July 31st, D - Aug 16th, E - Aug 30th.

Control of Cercospora Leafspot with Fungicides Using Six Different Spray Tips

MICHIGAN SUGAR Herford, Elkton, MI - 2017

Trial Quality: Good Soil Info: Loam Rhizoc Level: Low Variety: B-149N % OM: 2.9 pH: 7.7 CEC: 12.8 Cerc. Control: See Trts. Planted: April 28 Above Opt: P, K Problems: None

Harvested: Sept 29 High: Mn Low: B Seeding Rate: 4.5 inches Plots: 6 rows X 38 ft, 5 reps Added N: 140 lbs Rainfall: 22.4 inches

Row Spacing: 22 inches **Previous Crop:** Wheat

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment*	Droplet			Dama	_	Not &	/Δ	RWS	Δ	RW:	ςτ	T/#	Λ.	% S	пс	% CJ	IP
illo.	Treatment	Size	12 - S	ер	11- <i>F</i>	lug	ivet w	^	IXVV0			J.		`	/0 0		/0 00	
1	TeeJet 8002XR	V. Fine	3.0	С	2.2	С	\$1,383	а	10820	а	304	а	35.6	а	20.1	а	95.7	а
4	Air Induction 3070 02	Medium	3.6	С	2.3	С	\$1,354	ab	10614	ab	301	а	35.3	а	19.9	ab	95.9	а
3	VariTarget Red	Medium	4.4	bc	3.0	bc	\$1,330	ab	10443	ab	305	а	34.3	ab	20.1	а	95.7	а
6	Turbo TeeJet 11002	Fine	4.9	bc	3.0	bc	\$1,256	bc	9908	bc	294	ab	33.8	ab	19.5	abc	95.7	а
5	Air Induction XR 11002	Medium	4.9	bc	3.2	bc	\$1,207	С	9559	С	284	b	33.7	ab	18.9	С	95.6	а
2	TXR Cone Jet 8002	V. Fine	8.4	b	3.9	b	\$1,158	С	9206	С	285	b	32.2	b	19.0	bc	95.5	а
7	Untreated Check		81.0	а	12.6	а	\$926	d	6638	d	234	С	28.4	С	16.0	d	95.0	b
																		_
Ave	erage		15.	.7	4.	3	\$1,23	30	9598	3	28	7	33.	3	19	.1	95.6	3
LS	D 5%		4.	1	1.	4	113.	7	815.	1	13.	3	2.7	7	0.	8	0.5	
CV	′ %		20.	.1	25	.5	7.1		6.5		3.6	3	6.3	3	3.	3	0.4	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

A - June 29th: Proline @ 5.7 fl oz + Cuprofix @ 2 lbs + Masterlock @ 6.4 fl oz.

B - July 18th: Manzate @ 1.6 gt + Super Tin @ 8 fl oz + Masterlock @ 6.4 lf oz.

C - Aug 1st: Manzate @ 1.6 qt + Inspire @ 7 fl oz + Masterlock @ 6.4 fl oz.

D - Aug 15th: Super Tin @ 8 fl oz + Koverall @ 2 lbs + Masterlock @ 6.4 fl oz.

E - Sept 5th: Topquard @ 14 fl oz + Manzate @ 1.6 qt + Masterlock @ 6.4 fl oz.

Comments: Different nozzle types were evaluated for control of Cercospora Beticola leafspot in this trial. Fungicides were applied in 25 gpa and at 100 psi. It appeared the TeeJet XR and Air Induction 3070 nozzles provided the best disease control. VariTarget Red, Turbo TeeJet and Air Induction XR nozzles were somewhat less effective and the Cone Jet nozzles were the least effective. Some of the differences were not statistically significant. The disease level was high. This trial will be repeated in 2018.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*} All Treatments received the same spray program.

Effect of Copper + Roundup Tank Mixes on Cercospora Leafspot Control and Sugarbeet Phytotoxicity

MICHIGAN SUGAR Herford, Elkton, MI - 2017

Trial Quality: Good Variety: B-149N Planted: April 27 Harvested: Oct 4

Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Loam

% OM: 2.9 pH: 7.7 CEC: 12.8

Above Opt: P Opt: K High: Mn Med: B

Added N: 140 lbs

Prev Crop: Wheat

Rhizoc Level: Low Cerc Control: See trts.

Problems: None

Seeding Rate: 4.5 inches Rainfall: 22.2 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment	Rate/A	# App	% C Dam 19-S	age	% Phy 15-A	to	% Phy 19-\$	/to	Net \$	/A	RWS	SA	RWST	T/A	% SUC
1	Manzate Max	1.6 qt	8	8.0	С	0.0	b	0	b	\$1,104	ab	8359	ab	297 a	28.2 a	19.7 a
	alternate with															
	Badge SC	2 pt														
2	Cuprofix Ultra 40	2 lb	8	9.5	bc	0.0	b	0	b	\$1,123	ab	8464	ab	298 a	28.5 a	19.8 a
3	Badge SC	2 pt	8	10.3	bc	0.0	b	0	b	\$1,154	а	8741	а	293 a	29.9 a	19.4 a
4	Badge SC	2 pt	8	14.5	b	20.0	а	9	а	\$1,052	b	7974	b	294 a	27.2 a	19.5 a
	Roundup P Max	32 fl oz	3													
	in 1st, 3rd, 5th Applic															
5	Untreated Check			95.5	а	0.0	b	0	b	\$709	С	4991	С	226 b	22.1 b	15.6 b
Ave	erage			27.	.6	4.0)	1.	9	\$1,02	28	770	16	281	27.2	18.8
LSI	D 5%			5.3	3	2.8	3	0.	9	80.4	ļ	565	.5	15.1	2.8	0.9
CV	%			12.	.5	45.	6	29	.8	5.1		4.8	3	3.5	6.6	3.0

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Badge SC was applied alone and in a tank mix with Roundup in this trial. The Cercospora beticola (leafspot) infection was very high. Badge by itself provided similar levels of leafspot control as Cuprofix and Manzate alternated with Badge. When Badge was tank mixed with Roundup, sugarbeet leaf injury occurred and the level of leafspot control was lowered. Yield and net income suffered due to the Badge plus Roundup tank mix.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Control of Cercospora Leafspot and Alternaria with Eminent VP and Badge SC in Sugarbeets

Herford, Elkton, MI - 2017

Soil Info: Loam Trial Quality: Good Rhizoc Level: Low Variety: B-149N **%OM**: 2.9 **pH**: 7.7 **CEC**: 12.8 Cerc Control: See trts. Planted: April 28 Above Opt: P, K Problems: None

Seeding Rate: 4.5 inches Harvested: Oct. 3 High: Mn Med: B Plots: 6 rows X 38 ft, 4 reps Added N: 140 lbs Rainfall: 19.1 inches

Row Spacing: 22 inches Prev Crop: Wheat

Application: JD 3520 Tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment	Rate/A	# Арр	% Ce Dama 19-S	age	Net \$/A		RWS	4	RWST		T/A		% SU	IC	% CJ	JP
2	Badge SC +	1.5 pt	8	1.2	С	\$1,415	а	10434	а	283	а	36.8	а	19.0	ab	95.3	ab
	Manzate Max	1.6 qt															
1	Badge SC	2 pt	8	2.7	bc		_	9596	b		а		ab	18.6	b	95.6	а
3	Eminent VP +	13 fl oz	5	3.8	b	\$1,319	а	9589	b	280	а	34.3	ab	18.7	ab	95.4	а
	Badge SC	1.5 pt															
	Manzate Max	1.6 qt															
	Super Tin 4L +	8 fl oz															
	Badge SC	1.5 pt															
	Proline 480 SC +	5.7 fl oz															
	Preference +	0.13%															
	Badge SC	1.5 pt															
	Badge SC	2 pt															
4	Inspire XT +	7 fl oz	5	4.5	b	\$1,339	а	9729	ab	289	а	33.6	b	19.3	а	95.4	а
	Badge SC	1.5 pt															
	Manzate Max	1.6 qt															
	Super Tin 4L +	8 fl oz															
	Badge SC	1.5 pt															
	Eminent VP +	13 fl oz															
	Cuprofix Ultra 40	2 lb															
	Badge SC	2 pt															
5	Untreated Check		0	95.0	а	\$1,025	b	7004	С	235	b	29.7	С	16.1	С	95.0	b
Ave	erage			21.	4	\$1,288		9270		273		33.8	3	18.3	3	95.3	3
	D 5%			2.0)	107.1	7	732.1		11.6	7	2.6		0.6		0.4	
CV	7%			7.8		6.9		6.6		3.5		6.4		2.9		0.3	

Means followed by same letter are not significantly different (P=.05, Duncan's New MRT).

Leafspot: 70% Cercospora, 30% Alternaria.

Trts 1, 2: Start at 40 DSV, then 7-10 day schedule.

Trts 3, 4: Start at 40 DSV, then 17 days after triazole, 14 days after S Tin, 7-10 days after EBDC or Copper.

Comments: Leafspot pressure (Cercospora beticola (70%) and Alternaria alternata (30%) was very high. Badge + Manzate (8 Appl) provided very good leafspot control in this trial. Badge (8 Appl) also gave good leafspot control. The triazole treatments were somewhat less effective. Eminent VP and Inspire XT provided similar levels of deisease control.

Control of Cercospora Leafspot in Sugarbeets With K PHITE Systemic Fungicide

Herford, Elkton, MI - 2017

Trial Quality: Good Variety: B-149N Planted: April 28 Harvested: Sept 29

Plots: 6 rows X 38 ft, 6 reps

Row Spacing: 22 inches

Soil Info: Loam

% OM: 2.9 pH: 7.7 CEC: 12.8

Above Opt: P Opt: K High: Mn Med: B

Added N: 140 lbs

Prev Crop: Wheat

Rhizoc Level: Low Cerc Control: See trts.

Problems: None

Seeding Rate: 4.5 inches

Rainfall: 22.4 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

No.	Treatment	Rate / A	# App	% Co Dam 12-S	age	Net \$/	A	RWS	A	RWS	ST	T/A		% SU	С	% CJP
3	K PHITE 7 LP +	2 qt	7	7	е	\$1,526	а	9941	а	281	а	35.4	а	18.7	а	95.7
	Manzate Max	1.6 qt														
4	Manzate Max	1.6 qt	7	14	d	\$1,498	а	9669	а	277	а	34.9	а	18.4	а	95.7
2	K PHITE 7 LP	4 qt	7	65	С	\$1,164	b	7499	b	241	b	31.1	b	16.3	b	95.3
1	K PHITE 7 LP	2 qt	7	75	b	\$1,092	b	6955	b	235	bc	29.5	b	15.9	bc	95.3
5	Untreated Check			91	а	\$935	С	5874	С	222	С	26.5	С	15.1	С	95.2
Aver	age			50.	.4	\$1,24	3	7988	3	251	1	31.5	5	16.9)	95.4
LSD	5%			6.	1	130.2	2	817.9	9	18.	2	2.1		1.0		n.s.
CV %	6			10.	.1	8.7		8.5		6.0)	5.5		5.0		0.6

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: K PHITE (potassium polyphosphite) from Plant Food Company was evaluated for control of Cercospora leafspot, Cercospora beticola, in this trial. K PHITE applied alone did not control leafspot adequately, however, it appeared that when tank mixed with Manzate, it improved the performance of Manzate. The leafspot pressure was high. It should be noted that this is our only experience with this product.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Evaluate Regalia (Bio-Fungicide) for control of Cercospora Leafspot in Sugarbeets

MICHIGAN SUGAR Herford, Elkton, MI - 2017

Trial Quality: Good Variety: B-149N Planted: April 28 Harvested: Oct. 3

Plots: 6 rows X 38 ft, 6 reps

Row Spacing: 22 inches

Soil Info: Loam

% OM: 2.9 **pH**: **7.7 CEC**: 12.8 Above Opt: P Opt: K

High: Mn Med: B Added N: 140 lbs

Prev Crop: Wheat

Rhizoc Level: Low Cerc Control: See trts. Problems: None

Seeding Rate: 4.5 inches

Rainfall: 22.2 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 100 psi, 25 gpa

				CLS Rate											
No.	Treatment	Appl	Rate/A	% Injury	Net \$/A		RWSA	RWS	T	T/A	\	% SU	C	% CJ	P
				18-Sep	1										
2	Regalia +	Row Close	2 qt	2.8 c	\$1,264	а	9401 a	284	а	33.1	а	19.1	а	95.2	а
	Manzate Max		1.6 qt												
	Inspire XT +	+ 10 days	7 fl oz												
	Manzate Max		1.6 qt												
	Regalia +	+ 18 days	2 qt												
	Manzate Max		1.6 qt												
	Proline SC +	+ 10 days	7 fl oz												
	Preference +		0.13%												
	Manzate Max		1.6 qt												
	Regalia +	+ 18 days	2 qt												
	Manzate Max		1.6 qt												
	Super Tin 4L +	+ 10 days	7 fl oz												
	Manzate Max		1.6 qt			_									
1	Regalia +	Row Close	1 qt	3.2 c	\$1,290	а	9235 a	282	а	32.7	а	18.9	а	95.2	а
	Manzate Max		1.6 qt												
	Inspire XT +	+ 10 days	7 fl oz												
	Manzate Max		1.6 qt												
	Regalia +	+ 18 days	1 qt												
	Manzate Max		1.6 qt												
	Proline SC +	+ 10 days	7 fl oz												
	Preference +		0.13%												
	Manzate Max		1.6 qt												
	Regalia +	+ 18 days	1 qt												
	Manzate Max		1.6 qt												
	Super Tin 4L +	+ 10 days	7 fl oz												
	Manzate Max		1.6 qt												
3	Regalia	Row Close	2 qt	76.3 b	\$831	b	7087 b	250	b	28.4	b	17.1	b	94.7	b
	8 Applications	then 10 days										1= 6		215	_
4	Untreated Check			100.0 a	\$885	b	5647 c	230	С	24.6	С	15.9	C	94.3	b

Average	45.6	\$1,068	7842	262	29.7	17.8	94.8
LSD 5%	2.2	62.6	399.7	10.4	1.1	0.6	0.5
CV%	3.8	4.8	4.1	3.2	3.0	2.8	0.5

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: It appeared that by adding Regalia (biological) to Manzate, Cercospora beticola (leafspot) control was improved in this trial, however, there should have been another check for treatments 1 and 2. Regalia by itself provided suppression of the disease.

*Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Strategies for Cercospora leaf spot: cultivar and fungicide program, Cedar Springs, 2017

Cedar Springs, Ontario, Canada

Cheryl Trueman, University of Guelph, Ridgetown Campus, Ridgetown, ON

Trial Quality: Fair Variety: B-1399, C-RR059, C-G333NT April 27 Location: **Planted:** Cedar Springs, Ontario, Canada October 16 hand-held boom, CO₂ pressure Harvested: **Application Method: Plot Size:** 2 rows x 23 feet **Application Water Volume:** 25 gal/A except where indicated

Row Spacing: 2.5 feet Reps: 4

Seeding Rate: 3.5 seeds/foot

Key Findings:

- Disease severity:
 - All cultivars responded the same way to fungicide program and Cercospora leaf spot severity was similar among all cultivars.
 - Manzate Pro-Stick calendar sprays provided good control and sometimes required fewer fungicide applications (6 to 7 applications) than MSC Canada-adapted programs (6 to 8 applications). Manzate Pro-Stick beginning at 50 DSV using low water volume (12 gpa) had higher disease than the MSC Canada-adapted 'susceptible' program while the equivalent high water volume (25 gpa) treatment did not.
- Yield and sugar:
 - o Fungicide program and cultivar did not affect beet or sugar yield, or sugar content.

Table 1. Area under the disease progress curve (AUDPC) for Cercospora leaf spot.

		-			
		Sugar		Yield	
Program (# applications) ^b	AUDPC ^a	(%)	RWST	(tons/acre)	RWSA
Unsprayed control	1616 a ^c	14.9 a	206 a	27.4 a	5640 a
Manzate Pro-Stick (begin 50 DSV, low water volume) (6)	1032 b	15.6 a	217 a	32.7 a	7093 a
Manzate Pro-Stick (begin 50 DSV) (6)	834 bc	15.1 a	210 a	31.0 a	6350 a
Manzate Pro-Stick (begin 40 DSV) (6)	740 bc	15.2 a	211 a	32.5 a	6866 a
Manzate Pro-Stick (begin 35 DSV) (7)	853 bc	15.5 a	215 a	32.0 a	6878 a
MSC Canada-adapted 'tolerant cultivar' program (6)	718 bc	15.6 a	218 a	29.3 a	6384 a
MSC Canada-adapted 'moderate cultivar' program (7)	756 bc	15.4 a	216 a	32.0 a	6881 a
MSC Canada-adapted 'susceptible cultivar' program (8)	567 c	14.9 a	215 a	33.2 a	7083 a
Cultivar					
B-1399	884 a	15.2 a	212 a	31.9 a	6769 a
C-G333NT	977 a	15.3 a	214 a	31.2 a	6680 a
C-RR059	807 a	15.5 a	215 a	30.6 a	6560 a

a AUDPC = area under the disease progress curve. A lower number is better. **Mean severity on Oct 10 in control plots was 87% (high).** b Manzate Pro-Stick programs began at the BEETcast™ DSV threshold indicated and were applied approximately every 14 days. MSC Canada-adapted programs were as follows: 'tolerant' 1) Proline + Manzate Pro-Stick at 50 DSV, 2) Manzate Pro-Stick at 45 DSV or 21 days, 3) Proline + Manzate Pro-Stick at 35 DSV or 14 days, 5+) Manzate Pro-Stick 21 DSV or 10 days, 'moderate' 1) Proline + Manzate Pro-Stick at 40 DSV, 2) Manzate Pro-Stick at 40 DSV or 18 days, 3) Proline + Manzate Pro-Stick at 25 DSV or 14 days, 4) Manzate Pro-Stick at 25 DSV or 14 days, 5+) Manzate Pro-Stick at 35 DSV or 10 days, 'susceptible' 1) Proline + Manzate Pro-Stick at 35 DSV, 2) Manzate Pro-Stick at 35 DSV or 15 days, 3) Proline + Manzate Pro-Stick at 20 DSV or 12 days, 4) Manzate Pro-Stick at 20 DSV or 12 days, 4) Manzate Pro-Stick at 20 DSV or 12 days, 4) Manzate Pro-Stick at 20 DSV or 10 days. For MSC Canada-adapted programs, where both DSV and number of days are listed, the fungicide was applied according to the criteria that was reached first. 'Numbers in a column followed by the same letter are not significantly different at $P \le 0.05$, Tukey's HSD. Data for each cultivar is presented for interest only, there was no significant cultivar*schedule interaction.

Acknowledgements: This project was funded by the Michigan Sugar Company.

Strategies for Cercospora leaf spot: cultivar and fungicide program, Ridgetown, 2017

Ridgetown, Ontario, Canada

Cheryl Trueman, University of Guelph, Ridgetown Campus, Ridgetown, ON

Trial Quality: Good Variety: B-1399, C-RR059, C-G333NT Planted: April 26 Location: Ridgetown, Ontario, Canada October 23 hand-held boom, CO₂ pressure Harvested: **Application Method: Plot Size:** 2 rows x 23 feet **Application Water Volume:** 25 gal/A except where indicated

Row Spacing: 2.5 feet Reps: 4

Seeding Rate: 3.5 seeds/foot

Key Findings:

• Disease severity (Table 1):

- o All cultivars responded the same way to fungicide program.
- o Cercospora leaf spot severity among cultivars was as expected (C-G333NT > CRR059 > B-1399).
- Using a low water volume (12 gpa) was less effective than standard volume (25 gpa) for Manzate Pro-Stick.
- o Manzate Pro-Stick calendar programs provided good disease control and required fewer fungicide applications (7 to 8 applications) than MSC Canada-adapted programs (8 to 12 applications).
- Yield and sugar (Table 2):
 - o Fungicide program did not affect beet yield.
 - Sugar yield was not affected by fungicide program. C-RR059 yielded higher sugar per acre than C-G333NT, which is more susceptible to Cercospora leaf spot than C-RR059. Sugar yield for B-1399 was equivalent to C-RR059 despite being more tolerant to Cercospora leaf spot than C-RR059.

Table 1. Area under the disease progress curve (AUDPC) for Cercospora leaf spot.

		$\mathbf{A}^{\mathbf{C}}$	UDPC ^a	
	All	B-1399	C-RR059	C-G333NT
Program (# applications) ^b	cultivars	'tolerant'	'moderate'	'susceptible'
Unsprayed control	986 a ^c	538 a	977 a	1444 a
Manzate Pro-Stick (begin 50 DSV, low water volume)		207 b	542 b	546 ab
(7)	431 b			
Manzate Pro-Stick (begin 50 DSV) (7)	112 cd	53 bc	73 c	209 bc
Manzate Pro-Stick (begin 40 DSV) (7)	110 cd	72 bc	119 c	139 c
Manzate Pro-Stick (begin 35 DSV) (8)	112 cd	54 bc	96 c	185 bc
MSC Canada-adapted 'tolerant cultivar' program (8)	69 de	41 c	56 c	110 c
MSC Canada-adapted 'moderate cultivar' program (10)	45 e	30 c	40 c	67 c
MSC Canada-adapted 'susceptible cultivar' program (12)	59 e	40 c	30 c	108 c
Cultivar				
B-1399	129 c	-	-	-
C-G333NT	351 a	-	-	-
C-RR059	242 b	-	-	=

a AUDPC = area under the disease progress curve. A lower number is better. **Mean severity on Oct 19 in control plots was 47% (moderate).** b Manzate Pro-Stick programs began at the BEETcast™ DSV threshold indicated and were applied approximately every 14 days. MSC Canada-adapted programs were as follows: 'tolerant' 1) Proline + Manzate Pro-Stick at 50 DSV, 2) Manzate Pro-Stick at 45 DSV or 21 days, 3) Proline + Manzate Pro-Stick at 35 DSV or 14 days, 4) Manzate Pro-Stick at 35 DSV or 10 days, 'moderate' 1) Proline + Manzate Pro-Stick at 40 DSV, 2) Manzate Pro-Stick at 40 DSV or 18 days, 3) Proline + Manzate Pro-Stick at 25 DSV or 14 days, 5+) Manzate Pro-Stick at 25 DSV or 14 days, 4) Manzate Pro-Stick at 25 DSV or 14 days, 5+) Manzate Pro-Stick at 25 DSV or 10 days, 'susceptible' 1) Proline + Manzate Pro-Stick at 35 DSV, 2) Manzate Pro-Stick at 35 DSV or 15 days, 3) Proline + Manzate Pro-Stick at 20 DSV or 12 days, 4) Manzate Pro-Stick at 20 DSV or 12 days, 5+) Manzate Pro-Stick 15 DSV or 10 days. For MSC Canada-adapted programs, where both DSV and number of days are listed, the fungicide was applied according to the criteria that was reached first. CNumbers in a column followed by the same letter are not significantly different at *P* ≤ 0.05, Tukey's HSD. Data for each cultivar is presented for interest only, there was no significant cultivar*schedule interaction.

Strategies for Cercospora leaf spot: cultivar and fungicide program, Ridgetown, 2017

Ridgetown, Ontario, Canada

Cheryl Trueman, University of Guelph, Ridgetown Campus, Ridgetown, ON

Table 2. Yield and sugar quality for beets treated with different fungicide schedules for Cercospora leaf spot.

	%		Total Yield	
Schedule (# applications) ^b	Sugar	RWST	(tons/acre)	RWSA
Unsprayed control	14.8 a	206 a	61.3 a	12643 a
Manzate Pro-Stick (begin 50 DSV, low water volume) (7)	15.1 a	212 a	60.8 a	12901 a
Manzate Pro-Stick (begin 50 DSV) (7)	15.0 a	212 a	65.3 a	13824 a
Manzate Pro-Stick (begin 40 DSV) (7)	15.1 a	213 a	62.4 a	13252 a
Manzate Pro-Stick (begin 35 DSV) (8)	15.4 a	219 a	61.2 a	13351 a
MSC Canada-adapted 'tolerant cultivar' program (8)	15.3 a	217 a	62.7 a	13599 a
MSC Canada-adapted 'moderate cultivar' program (10)	14.8 a	207 a	63.3 a	12963 a
MSC Canada-adapted 'susceptible cultivar' program (12)	15.2 a	215 a	63.5 a	13339 a
Cultivar				
B-1399	14.6 b	207 b	63.6 a	13155 ab
C-G333NT	15.0 b	209 b	60.8 a	12697 b
C-RR059	15.7 a	222 a	63.3 a	13850 a

^a Fungicide schedules are described in Table 1. ^b Numbers in a column followed by the same letter are not significantly different at $P \le 0.05$, Tukey's HSD. Data from cultivars is pooled to conserve space because although there was a cultivar*schedule interaction for sugar and RWST there was no difference in spray schedules within cultivar.

Acknowledgements: This project was funded in part through Growing Forward 2 (GF2), a federal-provincialterritorial initiative. The Agricultural Adaptation Council assists in the delivery of GF2 in Ontario. Funding was also provided by the Ontario Sugarbeet Growers' Association (OSGA).

Canadä

N. Rosenzweig, L. Hanson and P. Somohano Plant, Soil and Microbial Sciences Michigan State University East Lansing, MI 48824 C, Guza and J. Stewart Michigan Sugar Co. Bay City, MI 48706

In-vitro fungicide sensitivity of Cercospora beticola isolates from sugarbeet 2016-17

Cercospora leaf spot (CLS) caused by *Cercospora beticola* is the most serious foliar disease of sugarbeet in Michigan and when conditions are conducive can cause yield losses. The need to preserve the usefulness of existing fungicide chemistries has been particularly important since the development of fungicide insensitivity issues in CLS. Additionally, from 2013-2016, there has been a steady increase in frequency of *C. beticola* isolates with triazole and QoI resistance collected from commercial production fields in Michigan and Ontario, CA. Major issues have developed over the past few years with the introduction of effective fungicides for control of this disease related to fungice application timing and development of insensitivity to established and novel fungicides in *C. beticola* populations. This has led to the increase in the development of insensitivity to some fungicides previously recommended for CLS management, most notably thiophanate-methyl, benzimidazoles and QoIs. Therefore, this project continued to monitor fungicide sensitivity of pathogen populations to inform the development of resistant management and fungicide use recommendations.

Sample collection and geographical origin of isolates: Isolates of *C. beticola* were collected from leaves with symptoms of CLS sampled from sugarbeet fields in east-central Michigan during Sep and Oct in 2016 and 2017. Samples of up to 20 leaves from throughout a selection of sugarbeet production fields in Michigan and Ontario CA were used in sensitivity testing. Isolates of *C. beticola* were recovered from infected leaf tissue from multiple field locations using established methods. Pure cultures isolated from individual CLS lesions were obtained to determine sensitivity to each fungicide described below. Representative lesions were randomly selected from sugarbeet leaves, surfaced sterilized, and placed into plastic bags with moist paper towel to maintain humidity near 100 %, and placed under fluorescent light with an 8-h photoperiod at 24°C for 7 d to promote sporulation. Hyphal tipping was used to isolate pure cultures of *C. beticola* onto clarified V8 (CV8) media amended with CaCO₃ (900 ml of distilled H₂O, 100 ml of CV8, 15 g of Bacto Agar, and 1.5 g of CaCO₃) for subsequent fungicide sensitivity assays.

In vitro fungicide sensitivity of Cercospora beticola by dilution gradient: Difenoconazole [DFZ; Inspire®, (Group 3)], fenbuconazloe [FBZ; Enable®, (Group 3)], flutriafol [FTL; Topguard®, (Group 3)], prothioconazole [PTZ; Proline®, (Group 3)], tetraconazole [TTZ; Eminent®125 SL, (Group 3)], pyraclostrobin [PYR; Headline® 2.08SC, (Group 11)], thiophanate-methyl [TPN; Topsin® 4.5FL (Group 1)] and triphenyltin OH [TPT; Super Tin® 80WP (Group 30)] and stock solutions of 10,000 mg/liter of each fungicide were prepared by dissolving commercial-grade fungicides in a sterile solvent. 50 ml of CV8 agar was poured into each dish, to form a layer of CV8 agar with a constant volume, thus when a stock solution is added to the agar, it results in a gradient from 0 to 1000 mg/liter across the agar surface. A method using a spiral gradient plater was used to determine effective concentration in inhibiting growth by 50% (EC₅₀). Pure cultures of C. beticola were prepared as described above. Conidial suspensions were prepared by flooding colony Petri dishes with 1 mL distilled water and scraping the conidia free from the surface with a rubber policeman. The conidial suspension (10 μL) was spread across the fungicide gradient plate from edge to center. Isolates were incubated for 14 d, at 24°C (two replications). The point coordinates at which the colonies start and end was recorded and entered into a software program, which calculates the EC₅₀ for each isolate for each of the fungicides.

C, Guza and J. Stewart Michigan Sugar Co. Bay City, MI 48706

Results

The mean EC₅₀ values were estimated for each of the fungicides listed above. In 2016 a total of 180, 175, 185, 182, 186 and 177 isolates were screened against the fungicides DFZ, FBZ, FTL, PTZ, TTZ, and TPT respectively (Table 1). In 2017 a total of 243, 210, 233, 232, 220, 162, 158 and 232 and 177 isolates were screened against the fungicides DFZ, FBZ, FTL, PTZ, TTZ, PYR, TPN and TPT respectively (Table 2). For DFZ, FBZ, FTL, PTZ, TTZ, and TPT the mean EC₅₀ values were 39.5, 55,5, 61.4, 70.9, 71.8 and 4.5 respectively in 2016 (Table 1). For DFZ, FBZ, FTL, PTZ, TTZ, PYR, TPN and TPT the mean EC₅₀ values were 37.8, 33.6, 79.8, 70.5, 56.8, 54.0, 51.0 and 9.7 respectively in 2017 (Table 2). The distribution of *C. beticola* isolate sensitivity in EC₅₀ values (mg/L) for all fungicides tested in 2016 and 2017 ranged from <1 to >100 (Tables 1 and 2).

Table 1. Comparison of mean effective concentration in growth by 50% (EC₅₀) for isolates of *Cercospora beticola* isolates to DFZ, FBZ, FTL, PTZ, TTZ, and TPT 2016.

			EC_{50} $(mg/L)^a$					
Active ingredient	FRAC ^b code	Total # of isolates	Mean (s.e.) ^c	Minimum	Maximum			
Difenoconazole (DFZ)	3	180	39.5 ± 3.5	0.10	126.2			
Fenbuconazole (FBZ)	3	175	55.5 ± 4.7	0.10	133.6			
Flutriafol (FTL)	3	185	61.4 ± 4.3	0.10	130.2			
Prothioconazole (PTZ)	3	182	70.9 ± 4.6	0.10	132.7			
Tetraconazole (TTZ)	3	186	71.8 ± 4.3	0.10	129.7			
Triphenyltin OH (TPT)	30	177	4.5 ± 0.4	0.10	24.2			

^a EC50 values determined for two replications based on mean effective concentration in growth by 50% by spiral gradient dilution method

Table 2. Comparison of mean effective concentration in growth by 50% (EC₅₀) for isolates of *Cercospora beticola* isolates to DFZ, FBZ, FTL, PTZ, TTZ, PYR, TPN and TPT 2017.

]		
Active ingredient	FRAC ^b code	Total # of isolates	Mean (s.e.) ^c	Minimum	Maximum
Difenoconazole (DFZ)	3	243	37.8 ± 2.3	0.10	155.0
Fenbuconazole (FBZ)	3	210	33.6 ± 2.8	0.10	105.2
Flutriafol (FTL)	3	233	79.8 ± 1.9	0.10	109.2
Prothioconazole (PTZ)	3	232	70.5 ± 1.7	0.10	40.3
Tetraconazole (TTZ)	3	220	56.8 ± 2.3	0.10	108.0
Pyraclostrobin (PYR)	11	162	54.0 ± 3.1	0.10	105.0
Thiophanate-methyl (TPN)	1	158	51.0 ± 3.5	0.10	105.0
Triphenyltin OH (TPT)	30	232	9.7 ± 0.9	0.10	99.00

^a EC50 values determined for two replications based on mean effective concentration in growth by 50% by spiral gradient dilution method

^b FRAC=Fungicide Resistance Action Committee group name based on chemical relatedness and mode of action

c s.e.=standard error of the mean

^b FRAC=Fungicide Resistance Action Committee group name based on chemical relatedness and mode of action

c s.e.=standard error of the mean

N. Rosenzweig, L. Hanson and P. Somohano Plant, Soil and Microbial Sciences Michigan State University East Lansing, MI 48824 C, Guza and J. Stewart Michigan Sugar Co. Bay City, MI 48706

In-vitro fungicide sensitivity distributions of Alternaria spp. isolates from sugarbeet 2016

Alternaria leaf spot (ALS) disease caused by *Alternaria* spp. in the *alternata* and *tenuis* species-group is common wherever sugarbeet is grown. Infection by *Alternaria* spp. has historically been considered a minor pathogen in sugarbeet production in the US, due to its more opportunistic or secondary nature. Recently, increased incidence and severity of ALS has been observed in MI at levels high enough to have the potential to cause yield loss due to defoliation. In 2015 and 2016 *Alternaria* spp. with higher levels of insensitivity to many classes of fungicides were also recovered from commercial production areas in Michigan. Isolates of *Alternaria* spp. were tolerant to the quinone outside inhibitor (QoI), triazole, triphenyltin OH and prothioconazole fungicides. Therefore, sensitivity monitoring of pathogen populations to inform the development of fungicide resistant management and fungicide use recommendations is essential.

Sample collection and geographical origin of isolates: Isolates of *Alternaria* spp. were collected from leaves with symptoms of ALS sampled from sugarbeet fields in east-central Michigan during Sep and Oct in 2016. Samples of up to 20 leaves from throughout a selection of sugarbeet production fields in Michigan and Ontario, CA were used in sensitivity testing. Isolates of *Alternaria* spp. were recovered from infected leaf tissue from multiple field locations using standard methods for the program. Mono-conidial isolates from individual ALS lesions were obtained to determine sensitivity to each fungicide described below. From each sugarbeet leaf representative lesions were cut with a cork borer; the lesions were chosen from similar sizes and in similar stages of sporulation and surfaced sterilized. All leaf disks derived from a particular sampling site were placed onto water agar media (WA) amended with streptomycin and CaCO₃ (1000 ml of distilled H₂O, 15 g of Bacto Agar, and 1.5 g of CaCO₃) for sporulation induction and positive identification. From individual lesions one conidium of *Alternaria* spp. was transferred to clarified V-8 (CV8) media amended with streptomycin and CaCO₃ (900 ml of distilled H₂O, 100 ml of CV8, 15 g of Bacto Agar, and 1.5 g of CaCO₃) for subsequent fungicide sensitivity assays.

In vitro fungicide sensitivity of Alternaria spp. by dilution gradient: Difenoconazole [DFZ; Inspire®, (Group 3)], fenbuconazloe [FBZ; Enable®, (Group 3)], flutriafol [FTL; Topguard®, (Group 3)], prothioconazole [PTZ; Proline®, (Group 3)], tetraconazole [TTZ; Eminent®125 SL, (Group 3)], pyraclostrobin [PYR; Headline® 2.08SC, (Group 11)] and triphenyltin OH [TPT; Super Tin® 80WP (Group 30)] and stock solutions of 10,000 mg/liter of each fungicide are prepared by dissolving commercial-grade fungicides in a sterile solvent. 50 ml of CV8 agar was poured into each dish, to form a layer of CV8 agar with a constant volume, thus when a stock solution is added to the agar, it results in a gradient from 0 to 1000 mg/liter across the agar surface. A method using a spiral gradient plater was used to determine effective concentration in inhibiting growth by 50% (EC₅₀). Pure cultures of Alternaria spp. were prepared as described above. Conidial suspensions are prepared by flooding colony Petri dishes with 1 mL distilled water and scraping the conidia free from the surface with a rubber policeman. The conidial suspension (10 µL) was spread across the fungicide gradient plate from edge to center. Isolates were incubated for 14 d, at 24°C (two replications). The point coordinates at which the colonies start and end was recorded and entered into a software program, which calculates the EC₅₀ for each isolate and fungicide.

Sugarbeet (Beta vulgaris)

Alternaria leaf spot; Alternaria spp.

C, Guza and J. Stewart Michigan Sugar Co. Bay City, MI 48706

Results

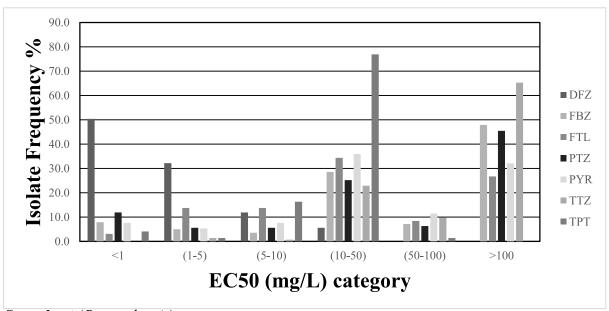

The mean EC₅₀ values were estimated for each of the fungicides listed above. A total of 143, 140, 131, 131, 143, 147 and 144 isolates were screened against the fungicides DFZ, FBZ, FTL, PTZ, TTZ, PYR, and TPT respectively (Table 1). For DFZ, FBZ, FTL, PTZ, TTZ, PYR, and TPT the mean EC₅₀ values were 3.0, 70.9, 46.8, 52.4, 62.0, 16.4 and 87.4 respectively (Table 1). The distribution of *Alternaria* spp. isolate sensitivity in EC₅₀ values (mg/L) for all fungicides tested ranged from <1 to >100 (Table 1 and Figure 1).

Table 1. Comparison of mean effective concentration in growth by 50% (EC₅₀) for isolates of *Alternaria* spp. isolates to DFZ, FBZ, FTL, PTZ, TTZ, PYR, and TPT 2016.

			$EC_{50} \left(mg/L \right)^{a}$				
Active ingredient	FRAC ^b code	Total # of isolates	Mean (s.e.) ^c	Minimum	Maximum		
Difenoconazole (DFZ)	3	143	3.0 ± 0.52	0.10	37.4		
Fenbuconazole (FBZ)	3	140	70.9 ± 3.95	0.10	133.6		
Flutriafol (FTL)	3	131	46.8 ± 3.64	0.10	130.2		
Prothioconazole (PTZ)	3	131	52.4 ± 3.57	0.10	105.0		
Tetraconazole (TTZ)	3	143	62.0 ± 4.01	0.10	132.7		
Pyraclostrobin (PYR)	11	147	16.4 ± 0.89	0.10	63.4		
Triphenyltin OH (TPT)	30	144	87.4 ± 2.80	3.96	129.7		

^a EC50 values determined for two replications based on mean effective concentration in growth by 50% by spiral gradient dilution method

Figure 1. Frequency distributions of in vitro sensitivity of *Alternaria* spp. isolates collected in 2016 from sugarbeet leaves. Sensitivity expressed as 50% inhibition of fungal growth (EC_{50}) in vitro, fungicide concentration estimate based determined by the spiral gradient dilution method. Difenoconazole=DFZ; fenbuconazole=FBZ; flutriafol=FTL; prothioconazole=PTZ; tetraconazole=TTZ; pyraclostrobin=PYR and triphenyltin OH=TPT.

Sugarbeet (Beta vulgaris)

Alternaria leaf spot; Alternaria spp.

^b FRAC=Fungicide Resistance Action Committee group name based on chemical relatedness and mode of action

c s.e.=standard error of the mean

Average of 3 Locations

(Page 1 of 10)

Trial Quality: Good Variety: SX 1245 N Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches

Rhizoc Level: see trts. Cerc Control: Good Problems: None

Seeding Rate: 4.5 inches

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa- IF, Foliar 7" band

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Seed Treatment*	Quadris	Net \$/A RWS		SA			Α	% SUC	% CJP	
18	Untreated Check	8 If	\$819	а	6478	ab	313	20.8	ab	20.7	95.5
19	Untreated Check	IF + 8 If	\$809	ab	6511	а	311	21.0	а	20.6	95.5
14	Tri-Pak	8 If	\$800	abc	6434	abc	314	20.6	abc	20.8	95.5
17	Untreated Check	IF	\$796	a-d	6261	a-d	317	19.9	abc	20.9	95.6
15	Tri-Pak	IF + 8 If	\$788	а-е	6443	abc	309	20.9	а	20.6	95.3
12	Vibrance	None	\$784	а-е	6137	a-d	312	19.8	abc	20.7	95.5
9	Vibrance	IF	\$778	а-е	6194	a-d	309	20.0	abc	20.6	95.3
5	Kabina ST	IF	\$777	а-е	6207	a-d	314	19.8	abc	20.8	95.6
16	Tri-Pak	None	\$776	а-е	6082	a-d	305	20.0	abc	20.3	95.3
1	Systiva	IF	\$776	а-е	6190	a-d	315	19.7	abc	20.9	95.5
13	Tri-Pak	IF	\$775	а-е	6178	a-d	312	19.8	abc	20.7	95.6
8	Kabina ST	None	\$771	а-е	6046	bcd	304	19.9	abc	20.3	95.4
11	Vibrance	IF + 8 If	\$769	а-е	6291	a-d	310	20.4	abc	20.6	95.4
4	Systiva	None	\$767	а-е	6015	cd	308	19.6	bc	20.5	95.4
10	Vibrance	8 If	\$759	b-e	6109	a-d	310	19.7	abc	20.6	95.4
2	Systiva	8 If	\$758	b-e	6112	a-d	310	19.7	abc	20.6	95.4
7	Kabina ST	IF + 8 If	\$749	cde	6141	a-d	307	20.1	abc	20.4	95.4
6	Kabina ST	8 If	\$739	de	5960	d	310	19.3	С	20.6	95.5
3	Systiva	IF + 8 If	\$731	ef	5999	cd	308	19.5	bc	20.5	95.5
20	Untreated Check	None	\$686	f	5279	е	299	17.6	d	20.0	95.2
Ave	erage		\$77	70	618	53	310	19	.9	20.6	95.4
	D 5%		48.		377		n.s.	1.		n.s.	n.s.
CV			5.5		5.		2.4	4.		2.0	0.3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Seed Treatments: Systiva (5 g / unit), Vibrance (2 g / unit), Kabina (14 g / unit)

Tri-Pak: Metlock (2 g / unit) + Rizolex (2 g / unit) + Kabina (7 g / unit)

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

MICHIGAN SUGAR Average of 3 Locations

(Page 2 of 10)

No.	Seed Treatment*	Quadris	Net S	Net \$/A		B /	Vigor		Su		et Stand 00 ft	
					100	11			Early	/	Late	è
18	Untreated Check	8 If	\$819	а	4.6	def	7.9	ab	189.8	а	178.3	а
19	Untreated Check	IF + 8 If	\$809	ab	3.2	f	8.0	ab	181.5	a-d	175.5	abc
14	Tri-Pak	8 If	\$800	abc	4.5	def	7.8	b	188.4	а	172.2	а-е
17	Untreated Check	IF	\$796	a-d	4.9	c-f	8.0	ab	188.2	а	174.8	abc
15	Tri-Pak	IF + 8 If	\$788	а-е	4.0	def	8.2	а	168.1	cde	164.6	def
12	Vibrance	None	\$784	а-е	5.5	b-e	8.1	ab	182.4	abc	175.7	abc
9	Vibrance	IF	\$778	а-е	4.2	def	8.1	ab	170.1	b-e	168.0	c-f
5	Kabina ST	IF	\$777	а-е	4.1	def	8.0	ab	167.9	cde	165.1	def
16	Tri-Pak	None	\$776	а-е	5.7	bcd	8.2	а	177.8	а-е	169.0	b-f
1	Systiva	IF	\$776	а-е	3.6	ef	8.0	ab	171.9	b-e	165.5	def
13	Tri-Pak	IF	\$775	а-е	3.8	def	7.9	ab	166.8	de	164.1	ef
8	Kabina ST	None	\$771	а-е	6.7	bc	7.9	ab	181.0	a-d	167.7	c-f
11	Vibrance	IF + 8 If	\$769	а-е	2.9	f	8.0	ab	167.5	cde	162.3	f
4	Systiva	None	\$767	а-е	7.0	b	7.8	b	189.8	а	173.1	a-d
10	Vibrance	8 If	\$759	b-e	4.4	def	7.9	ab	181.7	a-d	175.4	abc
2	Systiva	8 If	\$758	b-e	3.7	def	7.9	ab	184.5	ab	172.7	a-d
7	Kabina ST	IF + 8 If	\$749	cde	3.2	f	8.0	ab	165.8	е	162.8	f
6	Kabina ST	8 If	\$739	de	5.6	b-e	7.7	b	192.5	а	177.5	ab
3	Systiva	IF + 8 If	\$731	ef	4.4	def	7.9	ab	177.7	а-е	166.2	def
20	Untreated Check	None	\$686	f	14.1	а	7.4	С	188.2	а	169.3	b-f
Ave	erage		\$77	0	5.0)	7.	9	179.	1	170.	0
LSE	D 5%		48.	9	1.7	7	0.	3	12.7	7	7.2	
CV	%		5.5	2	29.	4	3.0		6.2		3.7	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Seed Treatments: Systiva (5 g / unit), Vibrance (2 g / unit), Kabina (14 g / unit)

Tri-Pak: Metlock (2 g / unit) + Rizolex (2 g / unit) + Kabina (7 g / unit)

Comments: Three trials were conducted in 2017 comparing the new *Rhizoctonia solani* seed treatments for control of Rhizoctonia root rot. All of the seed treatments provided effective control of the disease and performed similarly. The Systiva treatments had the highest stands but differences between seed treatments were small. Yield and quality values between the seed treatments were small. Quadris applications impacted the trial (positively) more than did the seed treatments. In-furrow treatments were more effective than foliar treatments, however, in-furrow treatments caused 6-8% stand loss.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**} Vigor: 0 to 10 ratings, 10 is best.

MICHIGAN SUGAR Average of 3 Locations

(Page 3 of 10)

Effect of Seed Treatments (avg. of all Quadris applic.)

No.	Seed Treatment*	Net \$/A	RWSA	RWST	T/A	% SUC	% CJP
1	Systiva	\$758	6079	311	19.6	20.6	95.5
2	Kabina ST	\$759	6088	309	19.8	20.5	95.5
3	Vibrance	\$772	6183	310	20.0	20.6	95.4
4	Tri-Pak	\$785	6284	310	20.3	20.6	95.4
5	Untreated Check	\$778	6132	310	19.8	20.6	95.5
Ave	erage	\$770	6153	310	19.9	20.6	95.5
LS	D 5 %	n.s.	n.s.	n.s.	n.s.	n.s.	n.s
CV	%	5.7	5.5	2.0	4.6	1.7	0.3

Effect of Quadris Applic. (avg. of all Seed Treatments)

No.	Treatment	Net \$/A	RWS	SA	RWS	ST	T/A		% SI	UC	% CJP
1	Quadris	\$780	6206	а	313	а	19.8	bc	20.8	а	95.5
2	Quadris	\$775	6219	а	311	ab	20.0	ab	20.7	ab	95.5
3	Quadris	\$769	6277	а	309	bc	20.4	а	20.5	bc	95.4
4	Untreated Check	\$757	5912	b	306	С	19.4	С	20.4	С	95.4
Av	erage	\$770	615	4	310)	19.9)	20.	6	95.5
LS	D 5 %	n.s.	168.	.7	3.9)	0.5		0.2	2	n.s.
CV	′ %	5.5	5.3	1	2.4		4.8	·	2.0)	0.3

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Seed Treatments: Systiva (5 g / unit), Vibrance (2 g / unit), Kabina (14 g / unit)

Tri-Pak: Metlock (2 g / unit) + Rizolex (2 g / unit) + Kabina (7 g / unit)

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

MICHIGAN SUGAR Average of 3 Locations

(Page 4 of 10)

Effect of Seed Treatments (avg. of all Quadris applic.)

No.	Seed Treatment*	Net \$/A	Dea		Vigo	or			eet Stand 100 ft	d
		B / 100		B / 100 ft			Ea	rly	La	ite
1	Systiva	\$758	4.7	bc	7.9	С	181	ab	169	b
2	Kabina ST	\$759	4.9	b	7.9	bc	177	b	168	b
3	Vibrance	\$772	4.2	С	8.0	а	175	b	170	ab
4	Tri-Pak	\$785	4.5	bc	8.0	ab	175	b	167	b
5	Untreated Check	\$778	6.7	а	7.8	С	187	а	174	а
Av	erage	\$770	5.0)	7.9	9	17	79	23	30
LS	D 5%	n.s.	0.6	3	0.1		7.	.1	4.	.3
CV	′ %	5.7	19.	4	2.3	3	6.	.6	4.	.2

Effect of Quadris Applic. (avg. of all Seed Treatments)

No.	Treatment Rate	Net \$/A	Dead		Vigor		Sugarbeet Stand B / 100 ft			
			Dead	'ly	Late					
1	Quadris 10 fl oz	\$780	4.1	bc	8.0	ab	173	b	167	С
2	Quadris 14.25 fl oz	\$775	4.5	b	7.8	O	187	а	175	а
3	Quadris	\$769	2.6	•	9.0	,	170	h	166	0
3	10 fl oz + 14.25 fl oz	\$709	3.0	Ü	0.0	а	172	D	100	С
4	Untreated Check	\$757	7.8	а	7.9	bc	184	а	171	b
					1				1	
Av	erage	\$770	5.0)	7.9)	17	9	17	0
LS	D 5%	n.s.	0.8	}	0.1		5.	7	3.2	2
CV	⁷ %	5.5	29.	4	3.0)	6.2	2	3.	7

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Seed Treatments: Systiva (5 g / unit), Vibrance (2 g / unit), Kabina (14 g / unit)

Tri-Pak: Metlock (2 g / unit) + Rizolex (2 g / unit) + Kabina (7 g / unit)

^{**} Vigor: 0 to 10 ratings, 10 is best.

MICHIGAN SUGAR Crumbaugh, Breckenridge, MI - 2017

(Page 5 of 10)

Rhizoc Level: See Trts

Seeding Rate: 4.5 inches

Cerc Control: Good

Problems: None

Trial Quality: Fair Variety: SX 1245 N Planted: May 15

Harvested: Sept 13 Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Clay Loam % OM: 3.0 pH: 7.1 CEC: 12.7 Above Opt: P Opt: K

High: Mn Med: B Added N: 140 lbs

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa- IF, Foliar 7" band

Rainfall: 17.9 inches Prev Crop: Soybeans

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

% SUC % CJP No. **Seed Treatment*** Quadris Net \$/A **RWSA RWST** T/A Kabina ST IF 5 \$768 6476 343 18.9 22.5 95.8 а а а 14 Tri-Pak 8 If \$747 6371 338 18.9 22.4 95.3 ab ab а а а 17 **Untreated Check IF** \$736 6131 341 18.0 22.5 95.4 ab abc ab а IF 18.2 95.5 1 Systiva \$733 ab 6190 abc 340 а ab 22.5 а 2 6209 95.3 Systiva 8 If \$727 ab abc 328 ab 18.9 а 21.8 ab ΙF 13 Tri-Pak 95.2 \$727 ab 6142 abc 328 ab 18.7 21.8 а ab 18 **Untreated Check** 8 If \$706 5938 abc 327 18.2 21.8 95.1 ab ab ab ab 19 **Untreated Check** IF + 8 If \$698 ab 5991 abc 329 ab 18.2 ab 21.7 ab 95.7 Vibrance IF 9 \$685 ab 5801 abc 323 ab 17.9 ab 21.6 ab 95.0 15 Tri-Pak IF + 8 If \$685 5979 330 18.1 ab 22.0 95.0 ab abc ab ab 4 Systiva None \$673 ab 5604 bc 323 ab 17.4 ab 21.4 ab 95.3 16 Tri-Pak 17.7 None \$670 ab 5575 bc 315 bc ab 21.1 bc 95.1 6 Kabina ST 8 If 95.5 \$668 ab 5726 abc 328 ab 17.5 ab 21.7 ab 10 Vibrance 8 If ab 95.4 \$665 5703 abc 330 17.3 21.8 ab ab ab 7 Kabina ST IF + 8 If 5803 324 17.9 21.5 95.2 \$663 b abc ab ab ab 8 Kabina ST None \$661 b 5508 317 17.4 21.1 bc 95.2 С bc ab IF + 8 If 11 Vibrance 95.2 \$658 5757 abc 328 ab 17.6 ab 21.8 ab h 3 Systiva IF + 8 If \$646 b 5661 abc 327 ab 17.3 21.6 95.5 ab ab 12 Vibrance None \$645 b 5378 С 326 ab 16.5 b 21.7 ab 95.1 20 **Untreated Check** None \$540 4415 d 302 С 14.6 20.2 С 95.2

Average	\$685	5818	327	17.8	21.7	95.3
LSD 5%	85.6	700.3	17.1	1.7	0.9	n.s.
CV %	10.87	10.5	4.5	8.1	3.7	0.5

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Seed Treatments: Systiva (5 g / unit), Vibrance (2 g / unit), Kabina (14 g / unit) Tri-Pak: Metlock (2 g / unit) + Rizolex (2 g / unit) + Kabina (7 g / unit)

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

Crumbaugh, Breckenridge, MI - 2017

(Page 6 of 10)

Na	Cond Tonaton out	Over duite	Net \$/A		Dea B / 10		Vigor**	Sugarbeet Stand B / 100 ft				
No.	Seed Treatment*	Quadris	Net \$	5/A	14-		0-10 Rating 21-Jul	Early		Late	3	
5	Kabina ST	IF	\$768	а	5.8	ef	8.5	200.0	b-e	190.3	b-f	
14	Tri-Pak	8 If	\$747	ab	7.5	def	8.3	207.5	a-d	195.2	a-d	
17	Untreated Check	IF	\$736	ab	6.8	def	8.6	193.3	b-e	185.3	c-g	
1	Systiva	IF	\$733	ab	4.5	f	8.3	193.5	b-e	187.8	c-g	
2	Systiva	8 If	\$727	ab	4.7	f	8.4	207.5	a-d	196.8	a-d	
13	Tri-Pak	IF	\$727	ab	7.0	def	8.3	180.0	е	178.2	efg	
18	Untreated Check	8 If	\$706	ab	8.5	def	8.4	214.9	ab	204.5	ab	
19	Untreated Check	IF + 8 If	\$698	ab	4.5	f	8.4	194.0	b-e	188.2	c-g	
9	Vibrance	IF	\$685	ab	7.0	def	8.4	198.3	b-e	187.7	c-g	
15	Tri-Pak	IF + 8 If	\$685	ab	6.7	def	8.3	180.2	е	176.2	fg	
4	Systiva	None	\$673	ab	13.7	b	8.3	210.2	abc	194.0	а-е	
16	Tri-Pak	None	\$670	ab	9.5	cde	8.3	192.7	b-e	180.3	d-g	
6	Kabina ST	8 If	\$668	ab	9.5	cde	8.3	226.5	а	208.8	а	
10	Vibrance	8 If	\$665	ab	5.7	ef	8.5	206.9	a-d	195.8	a-d	
7	Kabina ST	IF + 8 If	\$663	b	6.3	ef	8.1	184.4	de	175.2	fg	
8	Kabina ST	None	\$661	b	13.0	bc	8.6	205.6	a-d	188.7	b-g	
11	Vibrance	IF + 8 If	\$658	b	5.5	ef	8.3	187.2	cde	177.0	fg	
3	Systiva	IF + 8 If	\$646	b	6.8	def	8.3	195.8	b-e	183.3	c-g	
12	Vibrance	None	\$645	b	10.7	bcd	8.4	213.3	ab	199.8	abc	
20	Untreated Check	None	\$540	С	27.5	а	8.2	203.9	a-d	173.7	g	
Δνα	erage		\$68	5	8.0	6	8.4	199.	8	188.	3	
) 5%		85.0		3.		n.s.	19.8		13.8		
			10.9		35.		4.9	8.6		6.4		
ΟV	CV %		10.	J	55.		٦.⊍	0.0		0.7		

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Seed Treatments: Systiva (5 g / unit), Vibrance (2 g / unit), Kabina (14 g / unit) Tri-Pak: Metlock (2 g / unit) + Rizolex (2 g / unit) + Kabina (7 g / unit)

Comments: Systiva, Kabina, Vibrance and Tri-Pak (Metlock, Rizolex, Kabina) were applied to sugarbeet seeds to protect against Rhizoctonia root rot. The seed treatments were applied with and without Quadris (In-Fur, 8 leaf and In-Fur + 8 leaf). The seed treatments provided effective and similar levels of root rot control. Systiva, Kabina and Vibrance did not effect sugarbeet stand, however, Tri-Pak reduced stand by about 5%. Quadris applications appeared to have more impact than the seed treatments. Quadris In-Fur + 8 leaf was the most effective, followed by Quadris In-Fur and then Quadris 8 leaf.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**} Vigor: 0 to 10 ratings, 10 is best.

MICHIGAN SUGAR Blumfield West, Richville, MI - 2017

(Page 7 of 10)

Trial Quality: Fair-Good Variety: SX 1245 N Planted: April 26 Harvested: Sept 19

Harvested: Sept 19
Plots: 6 rows X 38 ft, 4 reps
Row Spacing: 22 inches

Soil Info: Sandy Clay Loam % OM: 2.6 pH: 7.7 CEC: 13.0 Above Opt: P, K

High: Mn Med: B Added N: 140 lbs Problems: None
Seeding Rate: 4.5 inches

Cerc Control: Good

Rainfall: 13.1 inches

Rhizoc Level: see trts.

Prev Crop: Rye

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa- IF, Foliar 7" band

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Seed Treatment*	Quadris	Net \$	6/A	RWSA	RWST	T/A	% SUC	% CJP
18	Untreated Check	8 If	\$890	а	6757	303	22.3	20.1	95.5
19	Untreated Check	IF + 8 If	\$848	ab	6549	297	22.0	19.9	95.3
17	Untreated Check	IF	\$847	ab	6390	303	21.1	20.2	95.5
14	Tri-Pak	8 If	\$843	ab	6493	300	21.7	19.9	95.5
16	Tri-Pak	None	\$842	ab	6338	290	21.8	19.5	95.0
12	Vibrance	None	\$836	ab	6299	302	20.9	20.1	95.3
4	Systiva	None	\$835	ab	6288	300	21.0	20.0	95.3
8	Kabina ST	None	\$815	ab	6138	292	21.1	19.6	95.0
15	Tri-Pak	IF + 8 If	\$814	ab	6382	291	21.9	19.6	95.0
20	Untreated Check	None	\$806	ab	5987	299	20.0	20.0	95.3
13	Tri-Pak	IF	\$805	b	6154	301	20.4	20.0	95.5
7	Kabina ST	IF + 8 If	\$787	b	6182	294	21.0	19.6	95.5
9	Vibrance	IF	\$786	b	6010	296	20.3	19.8	95.2
3	Systiva	IF + 8 If	\$785	b	6169	296	20.8	19.7	95.5
11	Vibrance	IF + 8 If	\$785	b	6166	294	21.0	19.7	95.2
10	Vibrance	8 If	\$783	b	6049	297	20.4	19.9	95.2
1	Systiva	IF	\$781	b	5977	297	20.1	19.9	95.3
2	Systiva	8 If	\$781	b	6036	298	20.3	19.9	95.2
6	Kabina ST	8 If	\$771	b	5964	296	20.1	19.7	95.6
5	Kabina ST	IF	\$763	b	5840	292	20.0	19.6	95.0
			001					40.0	
	Average		\$810		6208	297	20.9	19.8	95.3
	LSD 5%		71.3		n.s.	n.s.	n.s.	n.s.	n.s
CV	%		7.7	,	7.4	3.2	7.1	2.6	0.5

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Seed Treatments: Systiva (5 g / unit), Vibrance (2 g / unit), Kabina (14 g / unit)

Tri-Pak: Metlock (2 g / unit) + Rizolex (2 g / unit) + Kabina (7 g / unit)

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

MICHIGAN SUGAR Blumfield West, Richville, MI - 2017

(Page 8 of 10)

No.	Seed Treatment*	Quadris	Net \$/A		Dead B / 100 ft		Vigor ** 0-10 Rating		S		eet Stand 100 ft	
				\$890 a		29-Aug		1-Aug		ly	Late	
18	Untreated Check	8 If	\$890	а	2.0	bc	7.8	b	157.5	ab	186.0	ab
19	Untreated Check	IF + 8 If	\$848	ab	1.7	bc	7.8	b	146.5	а-е	171.3	a-g
17	Untreated Check	IF	\$847	ab	2.0	bc	8.0	b	146.7	а-е	181.9	abc
14	Tri-Pak	8 If	\$843	ab	1.8	bc	7.8	b	148.8	а-е	180.4	a-d
16	Tri-Pak	None	\$842	ab	2.7	bc	8.4	а	147.9	а-е	182.3	abc
12	Vibrance	None	\$836	ab	3.0	b	7.9	b	150.8	a-d	172.3	a-g
4	Systiva	None	\$835	ab	2.5	bc	8.1	ab	153.9	abc	193.1	а
8	Kabina ST	None	\$815	ab	2.7	bc	7.8	b	140.0	b-e	177.1	а-е
15	Tri-Pak	IF + 8 If	\$814	ab	1.7	bc	8.2	ab	141.0	b-e	169.0	b-g
20	Untreated Check	None	\$806	ab	7.2	а	7.4	С	164.8	а	178.8	a-d
13	Tri-Pak	IF	\$805	b	1.5	С	8.0	b	135.2	cde	159.4	c-g
7	Kabina ST	IF + 8 If	\$787	b	1.7	bc	8.2	ab	133.4	de	156.7	d-g
9	Vibrance	IF	\$786	b	2.0	bc	8.1	ab	139.4	b-e	151.5	fg
3	Systiva	IF + 8 If	\$785	b	1.8	bc	8.4	а	139.4	b-e	177.3	а-е
11	Vibrance	IF + 8 If	\$785	b	1.3	С	8.1	ab	134.6	de	150.6	g
10	Vibrance	8 If	\$783	b	2.7	bc	8.1	ab	145.2	b-e	167.3	b-g
1	Systiva	IF	\$781	b	1.4	O	8.0	b	136.3	cde	160.2	c-g
2	Systiva	8 If	\$781	b	1.8	bc	7.9	b	147.0	а-е	180.4	a-d
6	Kabina ST	8 If	\$771	b	2.2	bc	8.0	b	143.8	b-e	174.4	a-f
5	Kabina ST	IF	\$763	b	1.7	bc	8.0	b	131.7	е	155.0	efg
Δν.σ	arago.		\$810	<u> </u>	2.3	2	8.0	1	144	2	171	2
	erage 0.5%		30 π 71.3		1.2		0.0		15.		19.	
	LSD 5% CV %		71.3		46.3		3.8		9.4		19.6	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Systiva, Kabina, Vibrance and Tri-Pak (Metlock, Rizolex, Kabina) were applied to sugarbeet seeds to protect against Rhizoctonia root rot. The seed treatments were applied with and without Quadris (In-Fur, 8 leaf and In-Fur + 8 leaf). The seed treatments provided effective and similar levels of root rot control (Systiva slightly better). Systiva also had slightly higher stand counts compared to the other seed treatments. Quadris applications appeared to have more impact than the seed treatments. Quadris In-Fur + 8 leaf was the most effective, followed by Quadris In-Fur and then Quadris 8 leaf.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{*}Seed Treatments: Systiva (5 g / unit), Vibrance (2 g / unit), Kabina (14 g / unit) Tri-Pak: Metlock (2 g / unit) + Rizolex (2 g / unit) + Kabina (7 g / unit)

^{**} Vigor: 0 to 10 ratings, 10 is best.

(Page 9 of 10)

MICHIGAN SUGAR Mennonite Church, Pigeon, MI - 2017

Soil Info: Sandy Loam Trial Quality: Fair-Good Rhizoc Level: See trts. % OM: 2.0 pH: 6.9 CEC: 10.3 Variety: SX 1245 N Cerc Control: Good Planted: April 28 Above Opt: P Below Opt: K Problems: None

Harvested: Oct 10 High: Mn Low: B Seeding Rate: 4.5 inches Plots: 6 rows X 38 ft, 4 reps Added N: 140 lbs Rainfall: 15.3 inches

Row Spacing: 22 inches Prev Crop: Wheat

Application: JD 3520 tractor mounted plot sprayer, compressed air, 30 psi, 15.3 gpa- IF, Foliar 7" band

Monosem 6-row Agronomy Planter, compressed air, 30 psi, 9 gpa - IF, 3.5" band

No.	Seed Treatment*	Quadris	Net \$/A	RWSA	RWST	T/A	% SUC	% CJP
19	Untreated Check	IF + 8 If	\$881	6993	308	22.7	20.4	95.6
12	Vibrance	None	\$869	6734	307	22.0	20.2	96.1
15	Tri-Pak	IF + 8 If	\$866	6967	306	22.8	20.2	96.0
11	Vibrance	IF + 8 If	\$864	6950	308	22.6	20.3	95.8
9	Vibrance	IF	\$862	6771	309	21.9	20.5	95.6
18	Untreated Check	8 If	\$862	6740	308	21.8	20.3	95.8
8	Kabina ST	None	\$838	6491	305	21.4	20.1	95.9
10	Vibrance	8 If	\$829	6575	304	21.6	20.1	95.6
16	Tri-Pak	None	\$817	6333	309	20.5	20.4	95.8
1	Systiva	ഥ	\$814	6403	309	20.7	20.3	95.9
14	Tri-Pak	8 If	\$811	6439	304	21.2	20.1	95.7
17	Untreated Check	IF	\$806	6263	306	20.5	20.1	96.0
5	Kabina ST	F	\$801	6304	308	20.4	20.3	95.8
7	Kabina ST	IF + 8 If	\$797	6439	304	21.3	20.2	95.5
4	Systiva	None	\$793	6153	303	20.3	20.1	95.6
13	Tri-Pak	IF	\$792	6237	306	20.3	20.1	96.1
6	Kabina ST	8 If	\$778	6191	306	20.2	20.3	95.5
2	Systiva	8 If	\$765	6091	305	20.0	20.2	95.7
3	Systiva	IF + 8 If	\$761	6167	303	20.4	20.1	95.4
20	Untreated Check	None	\$711	5435	297	18.3	19.9	95.2
Δ			0040	0404	200	04.0	20.0	05.7
	erage		\$816	6434	306	21.0	20.2	95.7
	0 5%		n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
CV	<u>%</u>		12.7	12.3	4.6	10.8	4.0	0.6

Average	\$816	6434	306	21.0	20.2	95.7
LSD 5%	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
CV %	12.7	12.3	4.6	10.8	4.0	0.6

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

*Seed Treatments: Systiva (5 g / unit), Vibrance (2 g / unit), Kabina (14 g / unit) Tri-Pak: Metlock (2 g / unit) + Rizolex (2 g / unit) + Kabina (7 g / unit)

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

MICHIGAN SUGAR Mennonite Church, Pigeon, MI - 2017

(Page 10 of 10)

				De		Vigor**		Sugarbeet Stand			
No.	Seed Treatment*	Quadris	Net \$/A		00 ft	0-10 F				00 ft	
				22-	Aug	4-A	ug	Ear	y	Late	е
19	Untreated Check	IF + 8 If	\$881	3.5	bcd	7.7	abc	179.4	abc	191.8	а
12	Vibrance	None	\$869	2.9	bcd	7.8	ab	161.5	b-e	176.3	bc
15	Tri-Pak	IF + 8 If	\$866	3.7	bcd	8.1	а	155.2	de	176.5	bc
11	Vibrance	IF + 8 If	\$864	2.0	cd	7.7	abc	164.7	b-e	175.2	bc
9	Vibrance	IF	\$862	3.5	bcd	7.7	abc	160.5	b-e	176.8	bc
18	Untreated Check	8 lf	\$862	3.3	bcd	7.6	a-d	168.5	а-е	173.0	bc
8	Kabina ST	None	\$838	4.5	bcd	7.2	b-e	160.4	b-e	174.5	bc
10	Vibrance	8 If	\$829	4.7	bc	7.3	b-e	171.0	а-е	185.2	ab
16	Tri-Pak	None	\$817	4.9	abc	7.8	ab	158.3	b-e	178.8	bc
1	Systiva	IF	\$814	4.9	abc	7.7	abc	162.1	b-e	172.3	С
14	Tri-Pak	8 If	\$811	4.1	bcd	7.2	b-e	177.2	a-d	172.7	С
17	Untreated Check	IF	\$806	5.8	ab	7.3	а-е	189.5	а	192.3	а
5	Kabina ST	IF	\$801	4.8	bc	7.5	a-d	148.7	е	173.3	bc
7	Kabina ST	IF + 8 If	\$797	1.7	р	7.8	ab	156.3	cde	179.8	bc
4	Systiva	None	\$793	4.8	abc	6.9	cde	166.0	b-e	171.5	С
13	Tri-Pak	IF	\$792	3.0	bcd	7.3	а-е	161.1	b-e	178.8	bc
6	Kabina ST	8 If	\$778	5.1	ab	6.8	de	176.7	a-d	179.8	bc
2	Systiva	8 If	\$765	4.5	bcd	7.3	b-e	165.6	b-e	174.3	bc
3	Systiva	IF + 8 If	\$761	4.6	bcd	7.1	b-e	160.0	b-e	175.8	bc
20	Untreated Check	None	\$711	7.7	а	6.7	е	182.0	ab	169.5	С
Ave	erage		\$816	4.	2	7.	4	166	.2	177.	4
LSI	O 5%		n.s.	2.	5	0.	6	19.	6	10.1	1
CV	%		12.7	52	.1	7.	4	10.	3	5.0	

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Systiva, Kabina, Vibrance and Tri-Pak (Metlock, Rizolex, Kabina) were applied to sugarbeet seeds to protect against Rhizoctonia root rot. The seed treatments were applied with and without Quadris (In-Fur, 8 leaf and In-Fur + 8 leaf). The seed treatments provided effective and similar levels of root rot control (Vibrance slightly better). Systiva had slightly higher stand counts compared to the other seed treatments. Quadris applications appeared to have more impact than the seed treatments. Quadris In-Fur + 8 leaf was the most effective, followed by Quadris In-Fur and then Quadris 8 leaf. The Quadris In-Fur treatments reduced sugarbeet stand by about 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fungicide costs subtracted off.

^{**} Vigor: 0 to 10 ratings, 10 is best.

^{*}Seed Treatments: Systiva (5 g / unit), Vibrance (2 g / unit), Kabina (14 g / unit)

Tri-Pak: Metlock (2 g / unit) + Rizolex (2 g / unit) + Kabina (7 g / unit)

Harv/Samp:

Systiva® Seed Treatment

Schindler Farms, Kawkawlin - 2017

Trial Quality: Good Soil Info: Loam Rhiz Control: See treatments

Variety: C-G333NT Fertilizer: Fall: 150# K2O; 2x2:

Oct 19 / Oct 16

4 reps

41#-32#-0#-7#S + Mn & Cerc Control: Good control: 1. Inspire + Planted: April 28

B; S.D.: 41 gal of 28%

EBDC, Super Tin + EBDC,

3. Topquard + EBDC, 4. Super Tin + EBDC, 5.

Plot Size: **Prev Crop:** Corn Enable + EBDC, 6. Copper Row Spacing: 22 inch Weather: Heavy June rain,

dry late summer Seeding Rate: 61,300 Other Pests: Aphanomyces

Treatment	\$/A	RWSA	RWST	T/A	% Sugar		opulation 0 Ft. of Re	Dead Beets / 1200 Ft. of Row		
	,,,,,				/ · · · · · · · · · · · · · · · · · · ·	14 Days	28 Days	45 Days	Aug 11	Sept 28
No Systiva In-Furrow & Foliar	\$1,363	8321	315	26.4	20.5	56	186	178	5	9
Systiva In-Furrow & Foliar	\$1,347	8226	314	26.2	20.4	45	185	178	8	11
No Systiva Foliar Quadris	\$1,331	8133	318	25.6	20.7	50	177	168	8	14
Systiva Foliar Quadris	\$1,304	7970	320	24.9	20.8	38	182	171	9	19
No Systiva In-Furrow Quadris	\$1,279	7814	313	25.0	20.3	52	180	172	25	55
Systiva In-Furrow Quadris	\$1,268	7743	311	24.9	20.3	34	189	182	27	60
Systiva No Quadris	\$1,210	7402	305	24.2	20.0	31	171	163	55	93
No Systiva No Quadris	\$1,189	7282	310	23.4	20.2	46	179	170	57	114
Average	\$1,286	7861	313	25.1	20.4	44	181	173	24	47
LSD 5%	_	656	ns (11)	1.5	ns (0.6)	12	ns (18)	ns (16)	17	24
CV %		6	2	4.1	2.1	19	7	6	49	34

Comments: Systiva is a new systemic Rhizoctonia seed treatment from BASF. Trial was conducted to look at the effect of this seed treatment with and without Azoxystrobin (Quadris) applied in a T-band in-furrow and foliar. There appeared to be a small delay in emergence at the 14 day counts for the treatments that had Systiva. This trial had moderate Rhizoctonia pressure with most of the die off happening after the seedling stage. When Systiva with no Quadris was compared to a check with no Quadris, it appeared that Systiva improved the amount of dead beets. But it is important to note that any treatment that had Quadris applied, either in-furrow, foliar, or both, was not improved by adding Systiva in either dead beet counts or yield. That matches two SBA trials from 2016. The in-furrow Quadris treatments had 9.7 oz./acre of Quadris and 4 oz./acre of Mustang in a 4 inch band. The foliar Quadris treatments had 14.25 oz./acre of Quadris in a 7 inch band on 6/12/17 at the 8 leaf stage. This is a natural infection non-inoculated trial. Seed treatment is not a replacement for long term Rhizoctonia control that is seen with Quadris in furrow or foliar.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment, a company average RWST of 275, and early delivery premium. Bold: Results are not statistically different from top ranking treatment in each column.

Harv/Samp:

Row Spacing: 30 inch

Plot Size:

Systiva® Seed Treatment Hrabal Farms, Breckenridge - 2017

Cerc Control: Very good control: 1. Inspire

+ EBDC, 2. EBDC, 3. Super

Tin + EBDC, 4. Topguard +

EBDC, 5. Super Tin + EBDC

Trial Quality: Poor / Fair Soil Info: Loam Rhiz Control: See treatments.

Variety: C-G333NT Fertilizer: Fall: 2 ton turkey litter;

2x2: 12-12-12 w/ 2% Planted: April 28

Sept 17 / Sept 14

4 reps

Mn & 1%B: PPI: 90# N

by 28%

Wheat w/ clover Prev Crop:

Weather: Damaging June rains,

very dry late season

Seeding Rate: 56,000 Other Pests: Aphanomyces

Treatment	\$/A	RWSA	RWST	T/A	% Sugar		opulation 0 Ft. of R	Dead Beets / 1200 Ft. of Row		
					J		28 Days	42 Days	July 20	Sept 13
No Systiva In-Furrow & Foliar	\$1,472	6449	301	21.3	20.2	123	225	200	4	15
Systiva In-Furrow & Foliar	\$1,455	6357	306	20.8	20.6	122	215	196	5	21
Systiva Foliar Quadris	\$1,382	6092	298	20.2	20.0	123	226	201	10	37
No Systiva In-Furrow Quadris	\$1,380	6050	285	21.2	19.2	139	224	197	16	59
Systiva No Quadris	\$1,362	5968	300	19.8	20.3	124	234	208	44	109
Systiva In-Furrow Quadris	\$1,352	5916	289	20.4	19.5	116	230	209	5	32
No Systiva No Quadris	\$1,328	5816	295	19.6	19.9	157	230	194	73	179
No Systiva Foliar Quadris	\$1,302	5725	284	20.1	19.1	116	199	180	11	37
Average	\$1,379	6047	295	20.4	19.9	127	223	198	21	61
	ψ1,579									
LSD 5%		ns (1376)	ns (32)	ns (2.5)	ns (1.8)	ns (39)	ns (41)	ns (40)	34	68
CV %		15	7	8.4	6.1	21	13	14	111	76

Comments: USE DATA WITH CAUTION. Systiva is a new systemic Rhizoctonia seed treatment from BASF. This field received heavy rains immediately after planting and in June causing some variability in the data, especially the yield data. In trials that test for effectiveness against Rhizoctonia, the most reliable measure of effectiveness is the Dead Beet Counts. Results of Dead Beet Counts in this trial are very similar to the results of the same trial that was performed with Schindler Farms. Even though the variability is higher than desired, many of the trends in the yield data are similar to the results of the trial with Schindlers. By the time the third population count was taken there was significant seedling die off. The die off appeared to be consistent across all treatments and did not seem to be impacted by Systiva or Quadris. Samples were sent to Linda Hanson at the USDA. Based on the percentage of beets with the different pathogens, it looks like Fusarium was probably the major seedling issue, with a little Rhizoctonia, Aphanomyces and Colletotrichum. The in-furrow treatments received 6 oz. of Quadris and 4 oz. Mustang in a 4 inch band. The foliar treatments were 10.5 oz./acre of Quadris in a 7 inch band applied on June 9 at the 8 leaf stage. This is a natural infection non-inoculated trial. Seed treatment is not a replacement for long term Rhizoctonia control that is seen with Quadris in-furrow or foliar.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment, a company average RWST of 275, and early delivery premium. Bold: Results are not statistically different from top ranking treatment in each column.

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season Blumfield West, Richville, MI - 2017 (Page 1 of 5)

Trial Quality: Fair-Good **Variety:** C-G351NT, B-133N

Planted: May 10

Harvested: Sept 1, Oct 1, Nov 1

Plots: 6 rows X 38 ft, 4 reps

Row Spacing: 22 inches

Soil Info: Sandy Clay Loam **% OM:** 2.6 **pH:** 7.7 **CEC:** 13.0

Above Opt: P, K High: Mn, Med: B Added N: See Trts. Prev Crop: Rye Rhizoc Level: Low Cerc Control: Good

Problems: Planted into rye cover crop which should have been killed earlier

Seeding Rate: 4.5 inches **Rainfall:** 17.8 inches

Application: 2X2 on planter, 4 If stage incorporated with fluted coulter (between rows)

No.	Variety	Nitr L	ogen R b ai/Ac 2X2	ate* re	Harvest		NAT %/A		RWSA		RWST		T/A		% SUC		% Canopy Closure	
14	C-G351NT	160	40	120	1-Oct	\$54	\$1,546	а	8879	efg	312	a-d	28.5	fgh	21.0	ab	88	a-d
29	B-133N	80	40	40	1-Oct	\$51	\$1,501	ab	8459	ghi	289	ghi	29.3	fg	19.8	e-j	86	а-е
8	C-G351NT	80	40	40	1-Oct	\$54	\$1,465	abc	8229	ghi	303	cde	27.2	ghi	20.5	bcd	84	b-f
17	C-G351NT	200	40	160	1-Oct	\$54	\$1,367	bcd	8001	g-j	313	abc	25.5	hij	21.1	ab	90	ab
30	B-133N	80	40	40	1-Nov	\$33	\$1,336	b-e	11088	а	273	klm	40.6	а	18.4	opq	84	b-f
11	C-G351NT	120	40	80	1-Oct	\$53	\$1,335	b-f	7623	ijk	305	cde	25.1	ij	20.7	abc	85	b-e
16	C-G351NT	200	40	160	1-Sep	\$64	\$1,307	c-g	5646	mn	277	j-m	20.4	kl	18.8	m-p	91	а
33	B-133N	120	40	80	1-Nov	\$32	\$1,305	c-g	11009	ab	270	lm	40.8	а	18.2	pq	86	а-е
32	B-133N	120	40	80	1-Oct	\$47	\$1,304	c-g	7512	ijk	274	klm	27.5	ghi	19.1	j-n	88	a-d
20	C-G351NT	240	40	200	1-Oct	\$53	\$1,303	c-h	7752	h-k	316	ab	24.5	ij	21.2	а	86	а-е
10	C-G351NT	120	40	80	1-Sep	\$64	\$1,298	c-h	5455	mno	270	lm	20.3	klm	18.6	n-q	89	a-d
41	B-133N	240	40	200	1-Oct	\$48	\$1,297	c-h	7770	h-k	290	ghi	26.9	ghi	19.8	e-i	88	a-d
13	C-G351NT	160	40	120	1-Sep	\$67	\$1,287	c-i	5469	mno	285	g-j	19.2	k-n	19.2	i-n	92	а
12	C-G351NT	120	40	80	1-Nov	\$34	\$1,243	d-j	10418	abc	287	g-j	36.3	bc	19.2	i-n	87	а-е
28	B-133N	80	40	40	1-Sep	\$56	\$1,241	d-j	5182	mno	234	р	22.2	jk	16.6	t	85	b-e
9	C-G351NT	80	40	40	1-Nov	\$36	\$1,224	d-j	10070	bcd	296	efg	34.1	cde	19.6	f-k	83	def
38	B-133N	200	40	160	1-Oct	\$49	\$1,202	d-j	7132	jk	290	ghi	24.6	ij	19.7	e-j	87	a-e
15	C-G351NT	160	40	120	1-Nov	\$36	\$1,187	d-j	10039	cd	306	b-e	32.7	de	20.2	cde	89	a-d
35	B-133N	160	40	120	1-Oct	\$49	\$1,178	e-j	6899	kl	287	g-j	24.1	ij	19.5	f-l	89	a-d
39	B-133N	200	40	160	1-Nov	\$33	\$1,174	e-j	10179	a-d	289	ghi	35.2	cd	19.1	j-n	86	а-е
42	B-133N	240	40	200	1-Nov	\$30	\$1,152	f-k	10284	a-d	266	mn	38.6	ab	18.1	qr	87	а-е
40	B-133N	240	40	200	1-Sep	\$56	\$1,151	g-k	5122	mno	248	0	20.7	kl	17.2	s	89	a-d
19	C-G351NT	240	40	200	1-Sep	\$64	\$1,131	g-k	4996	no	281	h-l	17.8	lmn	19.1	k-n	89	abc
37	B-133N	200	40	160	1-Sep	\$57	\$1,130	g-k	4953	no	248	0	20.0	k-n	17.2	S	87	а-е
36	B-133N	160	40	120	1-Nov	\$33	\$1,120	h-k	9612	cde	283	h-k	34.0	cde	18.9	- -	87	а-е

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and Company average RWST.

Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

^{*} Nitrogen Rate: Nitrogen at planting (2X2) = 8 gal 28% N, 6 gal 10-34-0 and 4 gal ThioSul for a total of 40 lbs ai/A at planting, and at the 4 lf stage 28% N was the source, applied with fluted coulter.

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season Blumfield West, Richville, MI - 2017 (Page 2 of 5)

No.	Variety		ogen R b ai/Ac		Harvest Date	Net \$/A RWSA RW		/ST	T/	Ά	% SUC		Car	% nopy				
		Total	2X2	4 lf	Date	Ψ/ Ι									30		Clo	sure
31	B-133N	120	40	80	1-Sep	\$55	\$1,114	ijk	4737	no	234	р	20.2	klm	16.6	t	86	а-е
21	C-G351NT	240	40	200	1-Nov	\$34	\$1,108	ijk	9774	cde	296	efg	33.0	cde	19.5	f-k	86	a-e
7	C-G351NT	80	40	40	1-Sep	\$66	\$1,102	jk	4557	ор	274	klm	16.6	no	18.7	m-q	83	c-f
34	B-133N	160	40	120	1-Sep	\$60	\$1,096	jkl	4714	no	257	no	18.4	lmn	17.5	S	86	а-е
18	C-G351NT	200	40	160	1-Nov	\$35	\$1,087	jkl	9429	def	301	def	31.4	ef	19.9	d-g	88	a-d
6	C-G351NT	40	40	0	1-Nov	\$38	\$1,073	jkl	8665	fgh	305	cde	28.5	fgh	19.9	e-h	79	fgh
27	B-133N	40	40	0	1-Nov	\$34	\$988	klm	8076	g-j	280	i-l	28.8	fgh	18.6	n-q	84	b-f
5	C-G351NT	40	40	0	1-Oct	\$58	\$972	klm	5379	mno	319	а	16.9	mno	21.1	ab	75	h
26	B-133N	40	40	0	1-Oct	\$52	\$971	klm	5412	mno	292	fgh	18.5	lmn	19.7	e-i	81	efg
4	C-G351NT	40	40	0	1-Sep	\$72	\$925	lmn	3730	pq	289	ghi	12.9	pq	19.3	h-n	75	h
25	B-133N	40	40	0	1-Sep	\$63	\$901	mn	3662	q	256	0	14.3	op	17.4	s	77	gh
3	C-G351NT	0	0	0	1-Nov	\$37	\$770	no	6113	lm	297	efg	20.6	kl	19.3	g-m	66	i
24	B-133N	0	0	0	1-Nov	\$33	\$680	op	5479	mno	266	mn	20.6	kl	17.6	rs	64	i
1	C-G351NT	0	0	0	1-Sep	\$69	\$658	ор	2561	r	269	lm	9.5	r	18.2	pq	67	i
2	C-G351NT	0	0	0	1-Oct	\$56	\$623	ор	3363	gr	304	cde	11.1	gr	20.0	def	65	i
23	B-133N	0	0	0	1-Oct	\$50	\$548	р	2978	qr	271	lm	11.0	gr	18.3	opq	67	
22	B-133N	0	0	0	1-Sep	\$61	\$386	q	1453	S S	229	р	6.3	S	15.8	u	64	i
	B 10011		•		1 000	Ψ		•				•		_				
	erage						\$1,1		68		28		24		19			2.6
	D 5%						150.		848		9.		3.		0.			.9
CV	%						9.6		8.	8	2.	4	8.	8	2.	υ	4	.2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: Nitrogen was applied at rates of 0, 40, 80, 120, 160, 200 and 240 lb ai/A and harvested on 3 different dates, Sep 1st, Oct 1st and Nov 1st. The treatments were applied to 2 sugarbeet varieties, C-G351NT and B-133N. It appeared that the optimum N rate for Net \$/A was around 125 lbs. The sugarbeet crop was planted into a heavy stand of rye (cover crop) which grew vigorously in the spring. Without the rye cover crop, lower rates of nitrogen may have been optimum for Net \$/A. Low nitrogen rates (40 lbs) were definitely too low and high rates (over 200 lbs) were too high to maximize profits. With respect to harvest dates, Oct 1st returned the most income, followed by Sep 1st and then Nov 1st.

Net \$/A: Assume a \$40 beet payment and Company average RWST.

Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

^{*} Nitrogen Rate: Nitrogen at planting (2X2) = 8 gal 28% N, 6 gal 10-34-0 and 4 gal ThioSul for a total of 40 lbs ai/A at planting, and at the 4 lf stage 28% N was the source, applied with fluted coulter.

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season MICHIGAN SUGAR Blumfield West, Richville - 2017 (Page 3 of 5)

Variety Effect (Average of Harvest Dates and Nitrogen Rates)

No.	Variety	Net \$/A	RWSA	RWST	T/A	% SUC	% CJP	% Canopy Closure
1	C-G351NT	\$1,143	6959	295 a	23.4	19.8 a	95.2 a	83
2	B-133N	\$1,085	6748	268 b	24.9	18.2 b	94.6 b	83
		MA 444	0054	000	04.0	40.0	04.0	00
Av	erage	\$1,114	6854	282	24.2	19.0	94.9	83
LS	D 5%	n.s.	n.s.	1.3	n.s.	0.1	0.2	n.s.
CV	/ %	16.0	14.2	1.0	14.5	1.5	0.4	10.4

Nitrogen Rate Effect (Average of Varieties and Harvest Dates)

No.		ogen R b ai/Acı 2X2	'e	Net \$/ <i>i</i>	A	RWSA		RWS	Г	Т/#	4	% SUC		% CJP		% Cano Closi	ру
3	80	40	40	\$1,312	а	7931	а	278	С	28.3	ab	18.9	bc	94.6	d	84	а
4	120	40	80	\$1,267	ab	7792	а	273	d	28.4	а	18.7	С	94.2	е	87	а
5	160	40	120	\$1,236	ab	7602	а	288	а	26.1	С	19.4	а	95.1	b	88	а
6	200	40	160	\$1,211	ab	7557	а	286	ab	26.2	bc	19.3	а	94.9	bc	88	а
7	240	40	200	\$1,190	b	7616	а	283	b	26.9	abc	19.2	ab	94.7	cd	88	а
2	40	40	0	\$972	С	5821	b	290	а	20.0	d	19.3	а	95.5	а	79	b
1	0	0	0	\$611	d	3658	С	273	d	13.2	е	18.2	d	95.6	а	65	С
	erage			\$1,114		6854		282		24.		19.0		94.9)	82.	
_	D 5%			103.8	3	609.7		4.1		2.2		0.2		0.3		4.6	
C١	/ %			15.9		15.2		2.5		15.	3	2.2		0.5		9.5	5

Harvest Date Effect (Average of Varieties and Nitrogen Rates)

No.	Harvest Date	Net \$/A	RWSA	RWST	T/A	% SUC	% CJP	% Canopy Closure
2	October 1	\$1,186 a	6813 b	297 a	22.9 b	20.1 a	94.7 b	83
3	November 1	\$1,103 b	9303 a	287 b	32.5 a	19.0 b	95.7 a	82
1	September 1	\$1,052 c	4445 c	261 c	17.1 c	17.9 c	94.4 c	83
Av	erage	\$1,114	6854	281	24.2	19.0	94.9	82.6
LS	D 5%	40.1	226.7	2.6	0.8	0.1	0.1	n.s.
C∖	/ %	9.6	8.8	2.4	8.8	2.0	0.4	4.2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fertilizer costs subtracted off.

Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season

MICHIGAN SUGAR Four Michigan Locations (2015, 2016, 2017)

(Page 4 of 5)

Nitrogen Rate Effect (Average of all Trials and Harvest Dates)

Total N Applied Ib ai/A	2X2 Ib ai/A	4 If Ib ai/A	*Net \$/	Ά	RWS	A	RWS	ST	T/A		% SU		% CJ		Amir N	10
160	40	120	\$1,395	а	7807	а	270	b	28.8	а	18.1	bc	95.4	b	9.3	ab
80	40	40	\$1,364	а	7545	а	268	bc	27.9	а	18.1	bc	95.1	С	10.4	а
120	40	80	\$1,326	а	7503	а	264	d	28.3	а	17.9	cd	94.9	d	10.4	ab
240	40	200	\$1,330	а	7724	а	266	cd	29.0	а	18.0	bcd	95.1	cd	10.4	а
200	40	160	\$1,317	а	7563	а	270	b	27.8	а	18.2	b	95.2	bc	8.9	b
40	40	0	\$1,125	b	6114	b	278	а	21.9	b	18.5	а	95.7	а	7.4	С
0	0	0	\$809	С	4367	С	267	bcd	16.1	С	17.8	d	95.7	а	6.5	С
Average			\$1,238	3	6946		269	9	25.7		18.	1	95.	3	9.0)
LSD 5%			78.7		442.6	3	3.4	ļ	1.6		0.2	2	0.2	2	1.4	
CV %			14.8		14.85	5	3.0)	14.7		2.6	3	0.5	5	36.	7

Harvest Date Effect (Average of all Trials and Nitrogen Rates)

Harvest Date	*Net \$/A	RWSA	RWST	T/A	% SUC	% CJP	Amino N
October 1	\$1,310 a	7105 b	275 b	26.3 b	18.5 b	95.3 b	10.8 a
September 1	\$1,213 b	4591 c	245 c	18.8 c	16.7 c	94.8 c	7.5 c
November 1	\$1,191 b	9142 a	288 a	32.0 a	19.1 a	95.9 a	8.8 b
Average	\$1,238	6946	269	25.7	18.1	95.3	9.0
LSD 5%	27.2	139.4	1.8	0.5	0.1	0.1	0.9
CV %	8.2	7.4	2.4	7.8	2.1	0.4	35.0

Comments: Nitrogen was applied at rates of 0, 40, 80, 120, 160, 200 and 240 lb ai/A and harvested on 3 different dates, Sep 1, Oct 1 and Nov 1. A total of four trials were conducted during 2015, 2016 and 2017. Averaged over trials, it appeared that the 120 lb N rate produced the most grower income during early delivery. In each trial there were some issues that could have influenced results. In 2015, Cercospora leaf spot caused damage to the plots. In 2016, a thick crust caused uneven emergence and in 2017 a rye cover crop was allowed to get to big which created a need for more nitrogen. It is safe to say that less than 80 and over 200 pounds of N reduced grower income regardless of the harvest date.

Net \$/A: Assume a \$40 beet payment and trial average RWST with fertilizer costs subtracted off.

*Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

Effect of Nitrogen Rates on Grower Income, Yield and Quality when Harvested Early, Mid and Late Season

MICHIGAN SUGAR Four Michigan Locations (2015, 2016, 2017)

(Page 5 of 5)

Average of 4 Trials (2015, 2016, 2017) Harvested on September 1

Total N lb ai/A	2X2 lb ai/A	4 leaf lb ai/A	Net \$/	Ά	RWS	Α	RWS	Т	T/A	`	% SUC	;	% CJF	
160	40	120	\$1,400	bc	5347	е	248	i	21.8	g	16.9	i	95.0	ij
80	40	40	\$1,337	cde	4980	ef	243	jk	20.6	gh	16.7	_:	94.4	J
200	40	160	\$1,320	def	5175	ef	245	ij	21.1	gh	16.8	i	94.8	jk
240	40	200	\$1,316	def	5211	ef	244	ijk	21.6	gh	16.7	_:	94.7	k
120	40	80	\$1,281	efg	4893	f	241	jk	20.3	h	16.6	ij	94.3	J
40	40	0	\$1,141	h	4136	g	256	h	16.3	ij	17.2	h	95.4	fg
0	0	0	\$692	j	2393	h	240	k	9.9	j	16.3	j	95.1	hi
Average			\$1,21	3	4591	1	245	j	18.8	3	16.7	,	94.8	3

Average of 4 Trials (2015, 2016, 2017) Harvested on October 1

Total N lb ai/A	2X2 lb ai/A	4 leaf lb ai/A	Net \$/	Ά	RWS	A	RWS	ST	T/A	\	% SUC	;	% CJI	
160	40	120	\$1,480	а	8060	b	275	f	29.6	de	18.5	ef	95.2	gh
80	40	40	\$1,478	а	7921	bc	274	f	29.2	def	18.5	ef	95.1	ghi
240	40	200	\$1,446	ab	8090	b	275	ef	29.9	d	18.6	е	95.1	hi
120	40	80	\$1,406	bc	7634	С	269	g	28.9	def	18.3	fg	94.8	jk
200	40	160	\$1,379	bcd	7675	С	275	f	28.4	ef	18.5	ef	95.1	ghi
40	40	0	\$1,126	h	5951	d	283	cd	21.4	gh	18.9	cd	95.7	cde
0	0	0	\$857	i	4403	g	272	fg	16.6	i	18.1	g	95.7	cd
Average			\$1,31	0	710	5	275	5	26.3	3	18.5	5	95.3	3

Average of 4 Trials (2015, 2016, 2017) Harvested on November 1

Total N lb ai/A	2X2 lb ai/A	4 leaf Ib ai/A	Net \$	Ά	RWS	A	RWS	т	T/ <i>P</i>		% SUC	:	% CJF	
160	40	120	\$1,304	ef	10014	а	288	bc	34.9	abc	19.0	bc	95.9	bc
120	40	80	\$1,292	efg	9983	а	283	cd	35.6	а	18.9	cd	95.5	def
80	40	40	\$1,278	efg	9734	а	287	bc	34.1	bc	19.0	bc	95.8	С
200	40	160	\$1,251	fg	9839	а	290	b	34.0	С	19.2	ab	95.8	С
240	40	200	\$1,229	g	9871	а	280	de	35.5	ab	18.7	de	95.5	ef
40	40	0	\$1,107	h	8254	b	296	а	28.0	f	19.5	а	96.1	ab
0	0	0	\$879	i	6303	d	291	b	21.7	gh	19.1	bc	96.3	а
Average			\$1,19	1	9142	2	288	3	32.	0	19.1	1	95.9	9
LSD 5%			72.1		368.8	3	4.7	,	1.4		0.3		0.2	
CV %			8.2		7.4		2.4		7.8	3	2.1		0.4	

Net \$/A: Assume a \$40 beet payment and trial average RWST with fertilizer costs subtracted off.

*Early Delivery Incentive, Freight costs and Fertilizer costs are all incorporated into Net \$/A.

Early-Harvest Sugarbeet Nitrogen Response

Kurt Steinke and Andrew Chomas, Michigan State University See soil.msu.edu for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 26, 2016 (Harvest 8/29/17)	N Rates: See below
Soil Type : Clay loam; 2.9 OM; 8.0 pH; 23 ppm P; 122 ppm K	Population: 4 1/4 in. spacing
Variety: B1399	Replicated: 4 replications
Prev. Crop: Non-interseeded winter wheat	

N Trt.							
(Total lb. N/A)	RWSA	RWST	Tons/A	% Sugar	% CJP	NH2	Amino-N
0 – Check	2294	259	8.9	17.3	95.9	56	3.8
40	3248	261	12.4	17.5	95.4	59	4.1
80	4614	269	17.1	18.0	95.7	70	4.5
120	4526	267	17.1	17.8	95.7	82	5.2
160	4728	263	18.0	17.7	95.2	104	6.7
200	4197	253	16.6	17.3	94.7	109	7.0
LSD _(0.10) ^a	985	NS	3.8	0.4	0.6	21	1.1

^a LSD, least significant difference between means within a column at ($\alpha = 0.10$).

		Net Economic	Net Economic
		Return	Return Minus
N Trt.	Gross Grower	Minus N	N Costs and
(Total lb. N/A)	Payment (\$/A)	Costs (\$/A) ^a	Trucking (\$/A)b
0 – Check	636	636	602
40	895	880	835
80	1,273	1,243	1,179
120	1,260	1,214	1,150
160	1,300	1,239	1,172
200	1,161	1,085	1,021

^{a, b} Gross grower payment and net economic returns based upon a \$40/ton base payment with early delivery, volume, and quality incentives; N price of \$0.38/lb.; trucking costs of \$3.75/T.

Summary: Trial quality was average to good. All treatments received 40 lbs. N/A as 28%, 20 lbs. P₂O₅/A, 50 lbs. K₂O/A. and 2 lbs. Mn/A as starter placed 2x2 on April 26. Sidedress N applications were completed at the 2-4 leaf stage on May 30. In the current study, nitrogen treatments receiving 80 lb. total N (40 N as 2x2) resulted in the best combination of tonnage, sugar quality, and profitability for this early harvest date. Worth noting was that yield and RWSA were in some cases 50% reduced from 2016 early harvest data due to dry weather conditions.

Sugarbeet Nitrogen Response Following Wheat

Kurt Steinke and Andrew Chomas, Michigan State University See <u>soil.msu.edu</u> for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 26, 2017 (Harvest 10/27/17)	N Rates: See below
Soil Type : Clay loam; 2.9 OM; 8.0 pH; 23 ppm P; 122 ppm K	Population : 4 ½ in. spacing
Variety: B1399	Replicated : 4 replications

N Trt.							
(Total lb. N/A)	RWSA	RWST	Tons/A	% Sugar	% CJP	NH2	Amino-N
0 – Check	5396	272	20	17.9	96.5	65	4.2
40	6576	274	24	18.1	96.3	60	3.9
80	6910	274	25	18.0	96.4	74	4.7
120	7599	274	28	18.2	96.0	73	4.6
160	7466	268	28	17.7	96.1	96	6.2
200	7151	263	27	17.6	95.7	119	7.8
240	7364	249	30	16.9	95.1	174	11.4
$LSD_{(0.10)}^{a}$	NS	13	NS	0.7	0.4	41	2.7

^a LSD, least significant difference between means within a column at ($\alpha = 0.10$).

		Net Economic	Net Economic
		Return	Return Minus
N Trt.	Gross Grower	Minus N	N Costs and
(Total lb. N/A)	Payment (\$/A)	Costs (\$/A) ^a	Trucking (\$/A)b
0 – Check	791	791	716
40	957	942	852
80	996	966	872
120	1,116	1,070	965
160	1,092	1,031	926
200	1,033	957	856
240	1,087	996	905

^{a, b} Gross grower payment and net economic returns based upon a \$40/ton base payment with volume and quality incentives, an N price of \$0.38/lb., and trucking costs of \$3.75/T.

Summary: Trial quality was average to good. All treatments received 40 lbs. N/A as 28%, 20 lbs. P₂O₅/A, 50 lbs. K₂O/A. and 2 lbs. Mn/A as starter placed 2x2 on April 26. Sidedress N applications were completed at the 2-4 leaf stage on May 30. Dry July through September soil conditions limited plant growth. In this particular study, 120 lb. total N (40 N as 2x2 and 80 N sidedress) resulted in the best combinations of tonnage, quality, and profitability. Rates greater than 120 lb. N did not increase yield or sugar and increased amino-N concentrations beyond 5.0.

Modern vs. Conventional Sugarbeet Nitrogen Application Strategies

Kurt Steinke and Andrew Chomas, Michigan State University See <u>soil.msu.edu</u> for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 26, 2017 (Harvest 10/27/17)	Trt's: See below
Soil Type : Clay loam; 2.9 OM; 8.0 pH; 23 ppm P; 122 ppm K	Population : 4 ½ in. spacing
Variety: B1399	Replicated : 4 replications

N Strategy ^a	RWSA	RWST	Tons/A	% Sugar	% CJP	NH2	Amino-N
0 – Check	5197	265	20	17.5	96.5	87	5.5
Coulter SD 2-4 lf	8516	263	32	17.6	95.7	133	8.3
Y-Drop SD 2-4 lf	8130	265	31	17.6	95.8	102	6.7
Pre-Plant Inc.	8969	273	33	18.1	96.0	108	7.0
Surface Band SD 2-4 lf w/ UI ^b	8324	273	31	18.1	96.1	101	6.2
Rain Drop SD 2-41f	8676	268	32	17.8	96.0	102	6.6
Streamer SD 2-4 lf	8817	275	32	18.1	96.3	93	5.6
LSD _(0.10) ^c	1328	5	4.6	0.2	NS	NS	NS

^a ALL TREATMENTS OTHER THAN CHECK RECEIVED 40 N 2X2 AT-PLANT.

Summary: Trial quality was average to good. Please note all treatments received 2x2 N at-plant (40 lb./A). Sidedress N applications were completed at the 2-4 leaf stage on May 30 for a total N application rate of 160 lb./A. Very few differences in tonnage and quality were observed in 2017 due to N strategy. Nitrogen still requires moisture for root uptake and the dry July through September soil conditions likely limited both N movement and plant growth resulting in few differences between N application methods. Trial will be repeated in 2018. Across cropping systems, 2x2 subsurface N applications have continued to offer the most consistency across variable spring and summer weather conditions but this may not translate to yield benefits each and every year. Nitrogen stabilizers, specifically urease inhibitors, can have both positive and negative effects on yield depending upon weather conditions soon after application. As N application strategies continue to evolve, remember that a more efficient strategy to apply N may not necessarily improve (and can also reduce) the efficacy of the applied N.

^b UI, Urease inhibitor

^c LSD, least significant difference between means within a column at ($\alpha = 0.10$).

Raindrop Nozzles as a Sugarbeet N Application Strategy

Kurt Steinke and Andrew Chomas, Michigan State University See <u>soil.msu.edu</u> for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 26, 2017 (Harvest 10/27/17)	Trt's: See below
Soil Type : Clay loam; 2.9 OM; 8.0 pH; 23 ppm P; 122 ppm K	Population: 4 1/4 in. spacing
Variety: B1399	Replicated : 4 replications

N Strategy	2x2 N (lb/A)	Method, Rate, Timing of SD N (lb/A)
1	40	Raindrop, 120 N, 2-4 lf
2	40	Raindrop, 80 N, 2-4 lf
3	40	Raindrop, 120 N in a 50% water solution, 2-4 lf
4	40	Raindrop, 80 N in a 50% water solution, 2-4 lf
5	40	Raindrop, 120 N, 8-10 lf
6	40	Raindrop, 80 N, 8-10 lf
7	40	Raindrop, 120 N in a 50% water solution, 8-10 lf
8	40	Raindrop, 80 N in a 50% water solution, 8-10 lf
9	40	Flat-fan, 120 N, 2-4 lf
10	40	Flat-fan, 120 N, 8-10 lf
11	40	Surface Band, 120 N, 2-4 lf
12	Check – 0 N	Check – 0 N

N Strategy ^a	RWSA	RWST	Tons/A	% Sugar	% CJP	NH2	Amino-N
1	9291	278	34	18.4	96.0	87	5.6
2	8816	279	31	18.3	96.3	65	4.2
3	7864	281	28	18.5	96.1	64	3.9
4	7832	275	28	18.1	96.3	70	4.5
5	8330	276	30	18.2	96.1	89	5.6
6	8984	272	32	18.0	96.1	86	5.7
7	8989	270	33	17.8	96.2	86	5.6
8	8752	273	32	18.0	96.2	75	4.8
9	9676	277	35	18.3	96.0	103	6.4
10	8731	269	33	17.8	96.0	70	4.7
11	9553	275	35	18.1	96.2	95	6.1
12	5567	266	21	17.5	96.4	79	4.9
LSD _(0.10) b	1198	8	4.2	0.5	NS	NS	NS

^a ALL TREATMENTS OTHER THAN CHECK RECEIVED 40 N 2X2 AT-PLANT.

^b LSD, least significant difference between means within a column at ($\alpha = 0.10$).

Raindrop Nozzles as a Sugarbeet N Application Strategy (Cont'd)

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 26, 2017 (Harvest 10/27/17)	Trt's: See below
Soil Type : Clay loam; 2.9 OM; 8.0 pH; 23 ppm P; 122 ppm K	Population : 4 ½ in. spacing
Variety: B1399	Replicated: 4 replications

Preliminary Summary: Trial quality was average to good. Please note all treatments received 2x2 N at-plant (40 lb./A). Sidedress N applications were completed at the 2-4 or 8-10 leaf stage for a total N application rate of 120 - 160 lb./A (see treatment list). At the 2-4 lf stage, data show significantly less % foliar damage where UAN was blended with water using raindrop nozzles but yield declines were greater where UAN was blended with water as compared to straight UAN. These results carried through to RWSA. Few differences in tonnage and RWSA were observed among the 8-10 lf SD treatments. The two flat-fan application methods were intended to serve as a worst-case scenario comparison but resulted in comparable yield and RWSA to other treatments. Greater foliar damage was observed with the 8-10 lf flat-fan treatment as compared to the 2-4 lf flat-fan. The more conventional SD strategy banded to the side of the row at 2-4 lf resulted in one of the better combinations of tonnage and quality. Dry mid- and late-summer growing conditions may have influenced results of some treatments more than others. Trial will be repeated in 2018 to gauge the sugarbeet response to the raindrop nozzle application method under additional environmental conditions.

Nitrogen and Sulfur Combination Products in Sugarbeet

Kurt Steinke and Andrew Chomas, Michigan State University See <u>soil.msu.edu</u> for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 26, 2017 (Harvest 10/27/17)	Trt's: See below
Soil Type : Clay loam; 2.9 OM; 8.0 pH; 23 ppm P; 122 ppm K	Population : 4 ½ in. spacing
Variety: B1399	Replicated : 4 replications

Treatment ^a	Products Used ^b	RWSA	RWST	Tons/A	% Sugar	% CJP	Amino-N
120 N		5449	252	21	16.9	95.8	9.6
50 P ₂ O ₅ PPI, 110 N	MAP	8297	265	31	17.6	96.2	7.5
50 P ₂ O ₅ PPI, 30 S PPI, 84 N	MAP, AMS	7789	265	29	17.7	95.6	6.8
50 P ₂ O ₅ PPI, 30 S PPI, 86 N	MAP SymTRX20S	8903	274	32	18.1	96.4	5.7
50 P ₂ O ₅ PPI, 30 S PPI, 80 N	SymTRX12S	8982	273	33	18.1	96.1	6.5
50 P ₂ O ₅ PPI, 20 S PPI, 90 N	MAP SymTRX12S	8650	271	32	17.9	96.3	6.4
LSD _(0.10) ^c		1229	11	4.6	NS	NS	NS

^a ALL TREATMENTS RECEIVED 40 N 2X2 AT-PLANT with N equalized at 160 lb/A based on N contributions from other product usage.

Summary: Trial quality was average to good. Please note all treatments received 2x2 N at-plant (40 lb./A) with N equalized at 160 lb/A based on N contributions from other products. Remaining N was applied sidedress at the 2-4 leaf stage on May 30. Phosphorus application individually resulted in increases of 10 T/A yield, 13 lb. RWST, and 2,848 lb RWSA. Note that soil test phosphorus levels were 23 ppm, below the critical threshold guideline of 25 ppm. The two N, P, S replacement products evaluated resulted in non-significant yield, RWST, and RWSA increases as compared to P applied individually and the P and S combination using MAP and AMS as the P and S sources, respectively.

^b MAP = Monoammonium Phosphate (11-52-0), AMS = Ammonium Sulfate (21-0-0-24S), SymTRX20S = (16-1-0-20S), SymTRX12S = (16-20-0-12S).

^c LSD, least significant difference between means within a column at ($\alpha = 0.10$).

Liquid Carbon-Based Fertilizers Applied In-Furrow and 2x2 in Sugarbeet

Kurt Steinke and Andrew Chomas, Michigan State University See <u>soil.msu.edu</u> for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 26, 2017 (Harvest 10/27/17)	Trt's: See below
Soil Type : Clay loam; 2.9 OM; 8.0 pH; 23 ppm P; 122 ppm K	Population : 4 ½ in. spacing
Variety: B1399	Replicated : 4 replications

Treatment ^a	RWSA	RWST	Tons/A	% Sugar	% CJP	NH2	Amino-N
7-21-3, IF, 2 gpa	8406	262	32	17.5	96.0	139	9.2
7-21-3, 2x2, 5 gpa							
7-21-3, 2x2, 7 gpa	8183	264	31	17.6	95.9	133	9.2
10-34-0, IF, 2 gpa	8326	267	31	17.7	96.0	122	8.0
10-34-0, 2x2, 5 gpa							
10-34-0, 2x2, 7 gpa	8881	271	33	18.0	96.0	134	9.0
10-34-0, IF, 1 gpa	8695	272	32	18.0	96.1	122	7.8
4-0-3-2S, IF, 1 gpa							
10-34-0, 2x2, 5 gpa							
10-34-0, 2x2, 5 gpa	8138	266	31	17.7	95.8	148	10.0
4-0-3-2S, 2x2, 2 gpa							
N Only	5957	258	23	17.3	95.6	173	11.3
$LSD_{(0.10)}^{b}$	659	NS	NS	NS	NS	NS	NS

^a All treatments received 36 N 2X2 AT-PLANT with N equalized at 150 lb/A based on N contributions from other product usage. IF = In-furrow. In-furrow applications were equalized to 6 gpa using water.

Summary: Trial quality was average to good. Please note all treatments received 2x2 N at-plant (36 lb./A) with total N equalized to 150 lb/A based on N contributions from other products. Remaining N was applied sidedress at the 2-4 leaf stage on May 30. Low initial soil test phosphorus readings (i.e., 23 ppm) likely explain the non-significant yield increases and significant gains in RWSA realized from both the IF and 2x2 P₂O₅ applications when compared to the N only standard. Among treatments receiving IF or 2x2 nutrient applications, very few differences were observed. Practices that emphasize the start-right capacity of the plant have the capability to carry the plant through adverse mid- and late-season weather variability.

^b LSD, least significant difference between means within a column at ($\alpha = 0.10$).

Sugarbeet Response to Phosphorus Fertilizer

Kurt Steinke and Andrew Chomas, Michigan State University See soil.msu.edu for more information

Location: Saginaw Valley Research and Extension Center	Tillage: Conv., 30-in. row
Planting Date : April 26, 2017 (Harvest 10/27/17)	Trt's: See below
Soil Type : Clay loam; 2.9 OM; 8.0 pH; 23 ppm P; 122 ppm K	Population : 4 ¼ in. spacing
Variety: B1399	Replicated: 4 replications

P Trt. (Total lb. P ₂ O ₅ /A)	RWSA	RWST	Tons/A	% Sugar	% CJP	NH2	Amino-N
0 – Check	8243	269	31	17.8	96.2	103	7.1
25	8872	269	33	17.8	96.1	144	9.4
50	8161	269	30	17.8	96.0	101	6.8
100	8081	261	31	17.5	95.6	110	7.0
200	8608	268	32	17.8	96.0	98	6.5
$LSD_{(0.10)}^{a}$	NS	NS	NS	NS	NS	NS	NS

^a LSD, least significant difference between means within a column at ($\alpha = 0.10$).

P Trt.		Net Economic
(Total lb.	Gross Grower	Return Minus
$P_2O_5/A)$	Payment (\$/A)	Trucking (\$/A) ^a
0 – Check	1,213	1,097
25	1,291	1,167
50	1,174	1,062
100	1,177	1,061
200	1,247	1,127

^a Gross grower payment and net economic returns based upon a \$40/ton base payment with volume and quality incentives and trucking costs of \$3.75/T.

Summary: Trial quality was average to good. All treatments received 40 lbs. N/A as 28% placed 2x2 on April 26. Phosphorus applications consisted of triple superphosphate applied as a 2x2 at-planting. The 200 lb. P₂O₅/A treatment was applied per-plant incorporated. Sidedress N applications (120 lb. N/A) were completed at the 2-4 leaf stage on May 30 for a total N application of 160 lb./A. In the current study, phosphorus application did not influence tonnage or quality. Producers will want to monitor residual soil P levels to determine whether or not a P application is warranted.

Nitrogen Rate

Laracha Farms, Frankenmuth - 2017

Trial Quality: Excellent Soil Info: Tappan-Londo Loam Rhizoc Control: Good control:

Variety: C-G351NT Fertilizer: PPI: 52 gal of 28 + 1.5% Quadris I.F. & foliar

Planted: April 19 S, 2x2: 9 gal of 10-15-6- Cerc Control: Good control: See

Harv/Samp: Nov 7 / Oct 26 5.5S below for materials

Plot Size: 8 reps Prev Crop: Corn

Row Spacing: 20 inch Weather: Dry late season. Other Pests: None

Seeding Rate: 67,000

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP	Population 100 Ft. 45 Days
215#	\$1,564	10751	319	33.7	20.9	96.1	206
190#	\$1,523	10472	317	33.0	20.8	96.0	202
165#	\$1,466	10078	319	31.6	20.9	96.2	212
Average	\$1,518	10434	318	32.8	20.9	96.1	207
Average	φ1,510	10434	310	32.0	20.9	90.1	207
LSD 5%	_	321	ns (5)	0.8	ns (0.2)	ns (0.3)	ns (16)
CV %	_	3	2	2.4	1.1	0.3	5

Comments: This trial was performed to evaluate grower nitrogen rates. This trial followed a high residue corn crop that was disk ripped the previous fall. Nitrogen rate recommendations following high residue crops like corn have been closer to 160# of N. In this trial the whole field received 165# of nitrogen by the 2x2 starter and 52 gallons of 28% preplant incorporated. The two higher rates were then surface applied with the sprayer immediately after planting. Both of the higher rates yielded significantly better than the low rate. Previous research has found negative impacts to sugar content at rates like the two higher rates used in this trial. In this trial, no negative impacts were found to % Sugar, % CJP, RWST or amino N levels. This trial did not experience the heavy June rains like much of the growing area. The weather was generally favorable for the first half of the season and would not likely have caused high losses of nitrogen. The months of August and September were very dry. The Cercospora leafspot spray program was: 1. EBDC, 2. Inspire + EBDC, 3. Super Tin + EBDC, 4. Enable + EBDC, 5. Super Tin + Badge, 6. Proline + EBDC, 7. Super Tin + EBDC, 8. Badge + EBDC

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a company average RWST of 275.

Nitrogen Rate

Schindler Farms, Kawkawlin - 2017

Trial Quality: Excellent Soil Info: Tappan-Londo Loam Rhizoc Control: Excellent control:

Variety: C-G351NT Fertilizer: Fall: 150# K2O; 2x2: 41#- Quadris I.F. & foliar

Planted: May 9 32#-0#-7#S + Mn & B; Nitrogen rates below Cerc Control: Good control: See

Harv/Samp: Oct 18 / Oct 16 materials below

Plot Size: 6 reps Prev Crop: Wheat

Row Spacing: 22 inch Weather: Heavy rains in June

Seeding Rate: 61,300 followed by dry late Other Pests: Aphanomyces

season

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP
185#	\$1,367	8247	320	25.8	21.0	95.9
160#	\$1,341	8092	325	24.9	21.3	96.1
135#	\$1,290	7783	322	24.2	21.1	96.1
	*	2244		21.0		22.2
Average	\$1,333	8041	323	24.9	21.1	96.0
LSD 5%	_	341	ns (6)	0.9	ns (0.3)	ns (0.2)
CV %	_	3	1	2.7	1.2	0.2

Comments: This trial was performed to evaluate grower nitrogen rates. This trial followed a wheat crop with a wheat/oat cover crop that was disk ripped the previous fall. Nitrogen rate recommendations following high residue crops, like wheat, have been 140#-160# of total N. In this trial, 41# of N was applied in the 2x2 starter. The remainder of the nitrogen was sidedressed on June 1st. No significant impacts were seen for RWST, % Sugar, or % CJP. The highest rate of 185# was significantly higher than 160# and 135# in tons/acre. This result probably should not be unexpected since this field did experience heavy June rains that likely led to some loss of nitrogen. Considering the potential loss of nitrogen and the relatively low yield increase, growers should probably not use this trial to justify increasing nitrogen rates higher than the old recommendations. The Cercospora leafspot program is as follows: 1. Inspire + EBDC, Super Tin + EBDC, 3. Topguard + EBDC, 4. Super Tin + EBDC, 5. Enable + EBDC, 6. Copper.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment, a company average RWST of 275, and early delivery premium.

Bold: Results are not statistically different from top ranking treatment in each column.

Planted:

Nitrogen Rate

Spartan Acres (Knoerr), Saginaw - 2017

Trial Quality: Good Soil Info: Londo Loam Rhizoc Control: Good control: Quadris

Variety: B-1399 Fertilizer: Fall: 200# potash; PPI:

April 25 70# N by 28%; 2x2: 30#- Cerc Control: Good control: All w/ 10#-0#-12#S-2#B; Good control: All w/

Harv/Samp: Nov 1 / Oct 31 EBDC. 1. Proline, 2. Remaining N by S.D. EBDC. 3. Tin, 4. Inspire,

Plot Size: 6 reps Prev Crop: Wheat

Row Spacing: 20 inch Weather: Heavy rains in June,

Seeding Rate: 62,000 dry late summer Other Pests: None

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP
175#	\$1,309	8997	299	30.1	19.7	96.0
125#	\$1,268	8718	305	28.6	20.0	96.1
150#	\$1,259	8646	298	29.0	19.6	96.1
Average	\$1,278	8787	301	29,2	19.8	96.0
LSD 5%	— —	ns (519)	ns (8)	ns (1.9)	ns (0.4)	ns (0.3)
CV %	_	5	2	4.9	1.7	0.2

Comments: This trial was performed to evaluate grower nitrogen rates. This trial followed a wheat crop that was disk ripped the previous fall. Nitrogen rate recommendations following high residue crops, like wheat, have been 140#-160# of total N. In this trial, 30# of N was applied in the 2x2 starter and 70# was pre-plant incorporated. The remainder of the nitrogen was sidedressed on June 6th. No significant differences were found in yield or sugar content. The tons per acre and RWSA were the highest for the highest N rate. This result probably should not be unexpected since this field did experience heavy June rains that likely led to some loss of nitrogen. Considering the potential loss of nitrogen and the relatively low yield increase, growers should probably not use this trial to justify increasing nitrogen rates higher than the old recommendations.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a company average RWST of 275.

Bold: Results are not statistically different from top ranking treatment in each column.

5. EBDC, 6. Proline

Foliar Fertilizer & LX7 Foliar Spray

Laracha Farms, Bay City - 2017

Trial Quality: Excellent Soil Info: Loam - Tappan & Londo Rhizoc Control: Excellent control: Quadris

Variety: B-149N Fertilizer: Fall: Potash, Mesz and S I.F. & foliar

Planted: April 19 variable rate; PPI: 60 gal of 28 + 1.5% S, 2x2: 9 gal Cerc Control: Good control: See below

Harv/Samp: Nov 14 / Oct 31 of 10-15-6-5.5S for materials

Plot Size: 6 reps Prev Crop: Corn

Row Spacing: 20 inch Weather: Heavy rain in June. Other Pests: None

Seeding Rate: 67,000 Dry late season.

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP
LX7 Foliar	\$1,701	11697	312	37.5	20.6	95.8
Foliar Mix	\$1,661	11423	313	36.5	20.6	95.8
Check	\$1,660	11413	314	36.3	20.7	95.9
Average	\$1,674	11511	313	36.8	20.6	95.8
LSD 5%	_	ns (424)	ns (4)	ns (1.2)	ns (0.2)	ns (0.3)
CV %	_	3	1	2.4	0.8	0.2

Comments: This trial was performed to evaluate whether foliar fertilizer products will impact yield or quality even when there are no known nutrient deficiencies. Many growers add foliar nutrients to their Cercospora leafspot applications as part of their nutrient program. LX7 Foliar Blend is a product from MTS Environmental Holdings. LX7 Foliar blend is a fulvic acid solution with added micronutrients that supplies manganese, zinc, sulfur and boron. The Foliar Mix was a blended fertilizer with the analysis of 12-8-6-1.4S with 0.1 Zn, 0.1 Fe, 0.1 B, 0.35 Mn. No visual differences were seen. The LX7 did increase tonnage at the 10% significance level and this may return well more than the product cost. The products were applied at the same time as the Cercospora leafspot materials. LX7 was applied 5 times at 1 pint per acre on Cercospora applications 2,3,4,5,7. The foliar blend was applied 4 times at 2 quarts per acre on applications 2,3,4,5. The Cercospora leafspot spray program was: 1.6/21 EBDC, 2.6/30 Inspire + EBDC, 3.7/17 Super Tin + EBDC, 4.7/25 Enable + EBDC, 5.8/10 Super Tin + Badge, 6.8/21 Proline + EBDC, 7.9/12 Super Tin + EBDC, 8.9/29 Badge + EBDC.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a company average RWST of 275.

Foliar Fertilizer SBA - SVREC, Richville - 2017

Rhizoc Control: Good control: Quadris I.F. Trial Quality: Excellent Soil Info: Loam

and foliar

6. EBDC

0.9

0.1

Good / Fair control: 1.

Inspire + EBDC, 2. S.T.

Minerva Duo, 5. Badge,

3, Proline + Badge, 4.

Cerc Control:

1.8

B-149N 2x2: 10 gal of 28-0-0 w/ Variety: Fertilizer:

Mn & B; PPI: 40 gal of Planted: April 28

28%

Harv/Samp: Nov 6 / Oct 31

CV %

Plot Size: 3 reps Prev Crop: Wheat

Row Spacing: 22 inch Weather: Good early, dry late

season Seeding Rate: 63,000 Other Pests: None

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP
Check	\$1,472	10122	318	31.8	20.7	96.5
Foliar Fertilizer - SST 8% Calcium	\$1,449	9961	319	31.2	20.8	96.5
Average	\$1,461	10041	319	31.5	20.7	96.5
LSD 5%	_	ns (648)	ns (4)	ns (2.0)	ns (0.3)	ns (0.1)

Comments: A study performed in a different region found that foliar fertilization with calcium and silicon had a positive impact on root yield. In this trial, SST 8% Calcium with Stabilized Silica Technology was applied twice at one quart per acre. The first application was banded with foliar Quadris at 6-8 leaf and the second application was made 2 weeks later. No differences were found.

1

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a company average RWST of 275.

2

Fertiactyl® GZ Biostimulant

Meylan Farms, Auburn - 2017

Trial Quality: Excellent Soil Info: Loam Rhizoc Control: Good control:

Variety: C-G333NT Fertilizer: Fall: 250# Potash; PPI: Quadris I.F. & foliar

Planted: April 28 40 gal of 28%; 2x2: 20 Cerc Control: Good control: See

Harv/Samp: Nov 1 / Oct 26 gal of 22-10-0 w/ Mn & B materials below

Plot Size: 6 reps Prev Crop: Corn

Row Spacing: 22 inch Weather: Heavy June rains, Other Pests: Sugarbeet cyst

Seeding Rate: 68,000 dry late summer nematode

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP	Population 100 Ft. 35 Days
Check	\$1,236	8496	304	27.9	20.0	96.1	183
Fertiactyl GZ®	\$1,185	8144	303	26.9	19.9	96.1	175
Average	\$1,210	8320	304	27.4	19.9	96.1	179
LSD 5%	_	296	ns (6)	1.0	ns (0.3)	ns (0.5)	ns (19)
CV %	_	2	2	2.4	1.3	0.4	5

Comments: Fertiactyl GZ® is a liquid root biostimulant for early plant development. The product composition is 13% nitrogen urea, 5% soluble potash, 10% humic acid, 5% fulvic acid and 20% seaweed extract. The product was mixed into the 2x2 fertilizer at a 1 quart per acre rate. The check was 2x2 only, with no Fertiactyl. No visual differences were observed. Results showed significantly lower RWSA and tons per acre. There is no known reason that Fertiactyl would have actually lowered yield and this reduction may not be real. This field did experience heavy rains in June, as well as dry late summer conditions. The Cercospora leafspot spray program was: 1. Inspire + EBDC, 2. Super Tin + Badge, 3. Topguard + EBDC, 4. Super Tin + Badge, 5. Enable + EBDC, 6. EBDC, 7. EBDC.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a company average RWST of 275.

Harv/Samp:

Stimulate™ Biostimulant

Reif Farms, Frankenmuth - 2017

Trial Quality: Excellent Soil Info: Loam Rhiz Control: Good control: Quadris I.F.

Variety: C-RR059 Fertilizer: 2x2: 10 gal of 28-0-0 w/

Planted: April 19 Mn & B; PPI: 40 gal of Cerc Control: Good control: 1. Proline +

28% EBDC, 2. Inspire +

Plot Size: 6 reps Prev Crop: Soybeans EBDC, 3. Super Tin + EBDC, 4. Badge

Row Spacing: 22 inch Weather: Good early, Dry late Other Pests: None

Seeding Rate: 63,000 season

Aug 24 / Aug 23

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP		lation of Row
							14 Day	48 Day
Stimulate	\$1,671	5890	302	19.5	20.4	94.5	121	190
Check	\$1,640	5780	298	19.4	20.3	94.3	130	191
Average	\$1,656	5835	300	19.4	20.4	94.4	126	191
LSD 5%	_	ns (281)	ns (8)	ns (0.9)	ns (0.4)	ns (0.5)	ns (31)	ns (25)
CV %	_	3	2	3.3	1.7	0.4	17	9

Comments: Product literature describes Stimulate™ crop biostimulant as a highly concentrated diverse microbial formulation with dozens of natural strains of beneficial micro-organisms selected to convert unavailable soil nutrients to available forms, produce non-symbiotic N, plant hormones, vitamins and many other substances that improve plant health and increase shoot and root growth. The product was applied T-band in-furrow at 1 pint/acre with Quadris fungicide. The product literature states that although some fungicides may be tough on the fungal components, they can still be mixed right before application. No significant differences were seen. This trial was harvested very early in the harvest season.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment, an average RWST of 275, and early delivery premium.

Preliminary 2017 Report: Response of 8 Varieties to Nitrogen Fertilizer

University of Guelph, Ridgetowr Couture Farmland Farms, Ontario 2018 **Trial quality:** Excellent Dr. Laura L. Van Eerd and J. Mitchell MacFarlane

Early Harvest: 27-28 Sept. Late Harvest: 26-27 Oct. **Starter fertilizer**: 11 lb N/ac (11-52-0) Planting Date: 14 April 2017 **28% N applied**: 2 June 2017 'ypical fungicide program: 5-6 fungicide sprays with N **Soil**: 3.4% OM, 7.8 pH, 22.3 CEC, 28 P, 169 K, Silt Loam Previous Crop: Grain corn

Table 1: Impact of N fertilizer on sugarbeet production (8 varieties) in 2017 at Dover, Ontario*

18.4 a \$ 2,390 a -Payment =\$42/ton		275 a 18.2 a \$ 2,400 a -Company Ave.	
,400	18.2 a \$ 2		6 036
2,331	17.8 b \$ 2,331 a RWST=276	268 a 17.8 b \$	700 g
\$ 2,226	17.3 c \$ 2,226 b plus early premium	257 b 17.3 c	
\$ 2,164	16.7 d \$ 2,164 b	246 b 16.7 d	

*For each column, averages with different letters indicates a statistical difference.

N Fertilizer Results (Table 1)

-In 2017, beets grown without N fertilizer
looked less green but were similar in size.
-The soil likely provided considerable N to the crop.
- N fertilizer was applied in-season eliminating
early spring N loses
-Highest payment and RWSA were with
40 lb N/ac applied

Table 2. Fertilizer N rate correlations with sugarbeet payment, yield, RWST, and RWSA at early (E) and late (L) harvest showing correlations of these factors with SPAD meter and GreenSeeker readings taken in June. Correlations indicated with *p=0.05, **p=0.01, ***p=0.001, or not significant '-'.

	 	N Rate	e			Pay	ment	ment (\$/ac)			-RWS	۶ (IIb/	эс)	L	- Yielc	i (ton	RWSA (lb/ac)	\vdash	R	NST (I	RWST (lb/ton)		
	SPAD	Q\	GS	Z	N Rate	0,	PAD	GS	(۵	Z	ate	SPAD	GS	ĭ Z	ate S	PAD	N rate SPAD GS N rate SPAD GS		N rate	SP	SPAD GS	GS	
Variety	Ш	LE	_	ш	_	ш	_	ш	_	ш			EL	ш	l E	_	1 3 1 3 1 3 1 3 1 3 1			ш	_	L E	Variety
B12RR2N	ı	1	ı	* *	*	*	'	,	,	* * *	*	· *	1	ı	*	,	*	*	***	ı *		'	B12RR2N
SX1251RR	ı	1	1		*	۱ *	*	* *	*	,	* *	*	* * *		1		۱ * *	*	* * *	*			SX1251RR
B1399	1	1	1	*	*	1	1		•	*	*		1	*	1		*	*	* * * * * * * * * * * * * * * * * * *	ا *	1	* *	B1399
CRR059	ı	1	1	1	1	1	*	1	*			*	*	1	*	* *	*	* * *	* * * * *	*			CRR059
CG333NT	ı	1	1	*	*	*	ı	1	1	* *	*	ا *	1	ı	*		* * *	*	* * * * *	ا *		1	CG333NT
CG351NT	ı	*	*		1	*	*		•	,		* * *	1		ı *	*	1	*	* * * * * * * * * * * * * * * * * * *	*			CG351NT
Hill9616	ı	1	1	* *	1	1	•	* *	*	* *			* * *		*	*	۱ * *	*	* * * * * * * * * * * * * * * * * * *	ا *		*	Hill9616
SX1245NRR	ı	*	*	* *	*	1	'		•	* *	*		1	ı	1	,	1	*	* * *			'	SX1245NRR
all	ı	1	•	* * *		* * *	*		* *	* * *	* * *	*	*	· *	1	* *	* * * *	* * *	* * * * * * * * * * * * * * * * * * *	* * *	* * * *	* * * *	all

The higher the rate of N fertilizer applied the lower the payment, % sugar, RWST and RWSA, but the effect on yield was. For all varieties and harvest dates, when response between payment and N rate. The SPAD meter and GreenSeeker are used to measure leaf and canopy greenness. Although SPAD and GreenSeeker can pick out greenness, they do not show much promise as a predictive tool in sugarbeets when readings were taken in June. Readings taken again at both harvest more N was applied %sugar and RWST were lower (inverse relationship). At both the early and late harvest dates 5 of 8 varieties showed significant negative dates. These will be evaluated to determine if the tools can predict sugar at harvest.

AgBio Research

Evaluation of various ethofumesate rates applied postemergence in sugarbeet

Christy Sprague, Gary Powell and Brian Stiles, Michigan State University

Location: Richville (SVREC)	Application timings : 4 and 6-leaf beets
Planting Date: April 18, 2017	Herbicides: see treatments
Soil Type: Sandy clay loam	O.M.: 2.4 pH: 7.7
Replicated: 4 times	Variety: ACH G515RR

Table 1. Sugarbeet injury, common lambsquarters control, yield, and recoverable white sugar per acre

(RWSA) for Ethofumesate applied postemergence.

Herbicide treatments ^a	Injury (15 d after 4-lf)	C. lambsquarters (28 d after 6-lf)	Yield	RWSA
	%	%	-ton/A -	-lb/A -
Roundup $(32 \text{ oz}) - 2X$	0	99	22.8	6581
Ethofumesate (6 oz) + Destiny HC (1.5 pt) – 2X	4	18	13.6	3852
Ethofumesate $(12 \text{ oz}) + \text{Destiny HC} (1.5 \text{ pt}) - 2\text{X}$	6	25	8.9	2463
Ethofumesate $(18 \text{ oz}) + \text{Destiny HC} (1.5 \text{ pt}) - 2\text{X}$	2	33	15.1	4494
Ethofumesate $(24 \text{ oz}) + \text{Destiny HC} (1.5 \text{ pt}) - 2\text{X}$	4	40	16.6	4705
Ethofumesate $(32 \text{ oz}) + \text{Destiny HC} (1.5 \text{ pt}) - 2\text{X}$	4	47	17.1	5106
Ethofumesate $(6 \text{ oz}) + \text{Roundup} + \text{Destiny HC} - 2\text{X}$	2	100	26.1	7334
Ethofumesate (12 oz) + Roundup + Destiny $HC - 2X$	4	100	24.4	6799
Ethofumesate $(18 \text{ oz}) + \text{Roundup} + \text{Destiny HC} - 2\text{X}$	3	100	24.0	6907
Ethofumesate (24 oz) + Roundup + Destiny HC – 2X	3	100	25.3	7279
Ethofumesate (32 oz) + Roundup + Destiny HC – 2X	8	100	27.3	7797
Untreated	0	0	12.6	3558
$LSD_{0.05}^{b}$	6	9	6.5	1960

^a All treatments with Roundup PowerMax included ammonium sulfate at 17 lb/100 gal. See recommendations in the MSU Weed Control Guide for Field Crops.

Summary: A field trial was conducted to evaluate the effects of various ethofumesate rates applied postemergence (POST) to sugarbeet. With the increased issues with glyphosate-resistant weed and fewer herbicides available in sugarbeet, this trial was conducted to determine crop safety and weed control from higher rates of ethofumesate applied POST. Ethofumesate was applied alone and in tank-mixture with glyphosate to 4- and 6-leaf sugarbeet, and when common lambsquarters averaged 3 and 4 inches tall, respectively. Overall sugarbeet injury was low (6% or less) with ethofumesate applied alone with rates up to 32 fl oz/A, 15 days after the first application. By 15 days after the second application there was no sugarbeet injury. There was definite rate response for common lambsquarters control. However, common lambsquarters control only was 40 - 47% with the high rates of ethofumes at alone. There was no detriment to common lambsquarters control, sugarbeet yield, or recoverable white sugar per acre when any of the rates ethofumesate were added to Roundup PowerMax. Sugarbeet yield and recoverable white sugar per acre was only impacted by the lack of common lambsquarters control in the ethofumesate alone treatments. While the addition of ethofumesate did not improve common lambsquarters control it may be beneficial to help control glyphosate-resistant pigweed species, like common waterhemp. We will continue to examine higher rates of ethofumesate POST to determine if these treatments will control glyphosate-resistant weeds.

^b Means within a column greater than least significant difference (LSD) value are different from each other.

AgBio Research

Effect of simulated tank-contamination with dicamba on sugarbeet

Michael Probst and Christy Sprague, Michigan State University

Locations: Richville and East Lansing	Application timings : 2-, 6-, and 14-leaf beets
Richville 2016	East Lansing 2016
Planting Date: April 16	Planting Date: April 18
Variety: Hilleshog 9616	Variety: ACH 059
Richville 2017	East Lansing 2017
Planting Date: April 18	Planting Date: May 17
Variety: ACH G515	Variety: ACH G515

Table 1. Sugarbeet injury (14 DAT) and yield resulting from sub-lethal rates of dicamba applied at three different growth stages.

	<u> </u>		Richville		East L	ansing	
	Clarity	Sug	garbeet inj	ury	Sugarbe	et injury	Richville
Treatments ^{a,b}	rate	2-leaf	6-leaf	14-leaf	2-leaf	14-leaf	Yield ^c
	fl oz/A	%	<u>%</u>	%	%	%	ton/A
Non-treated control	0	0 a	0 a	0 a	0 a	0 a	29.0 a
Dicamba - 0.125%	0.04	4 ab	2 ab	4 a	5 ab	2 ab	29.1 a
Dicamba - 0.25%	0.08	8 b	6 bc	5 a	10 b	7 b	28.3 a
Dicamba - 0.5%	0.16	15 c	12 c	12 b	23 c	14 c	28.5 a
Dicamba - 1%	0.32	20 c	24 d	19 c	34 d	24 d	27.2 ab
Dicamba - 2%	0.64	32 d	36 e	37 d	40 d	37 e	24.2 b

Means followed by the same letter in the same column are not significantly different at $\alpha < 0.05$.

Summary: Field studies were conducted in 2016 and 2017 to determine the effects of tankcontamination with sub-lethal rates of dicamba on sugarbeets. These studies were conducted at the MSU Agronomy Farm in East Lansing and the Saginaw Valley Research and Extension Center in Richville. Significant sugarbeet injury was observed with rates starting at 0.25% for the 2- and 6-leaf exposure at Richville and the 2- and 14-leaf exposure at East Lansing. At the 14-leaf stage in East Lansing, it took 0.5% of dicamba for significant injury. The 2% rate of dicamba caused 32-37% injury at Richville and 37-40% injury at East Lansing, 14 DAT. Although injury was observed at all rates, only the 2% rate reduced sugarbeet yield. Combined over the two years, the 2% rate of dicamba reduced sugarbeet yield 17% at Richville, regardless of the stage of exposure. Even though there was significant injury at East Lansing there was no difference in sugarbeet yield in 2016, and plots were not harvested in 2017 due to poor conditions later in the season. Based on previous research, the expected rate of a tankcontamination following a three-rinse cleanout would fall within the 0125-0.5% range. While rates within this range caused injury to sugarbeet, they did not cause a yield reduction. However, yield reduction is not the only concern following sugarbeet exposure to dicamba. The presence of dicamba residues in the harvested sugarbeets can result in their rejection. We are currently analyzing samples collected throughout both years to determine the level of dicamba residues two weeks after treatment and at harvest.

^a All treatments included 22 floz/A of Roundup PowerMax + 17 lb/100 gal of ammonium sulfate to simulate tank-contamination.

^b Rate percentages are based off of a field use rate for Clarity of 32 fl oz/A.

^c Values are averaged across application timings.

AgBio**Research**

Effect of simulated tank-contamination with 2,4-D on sugarbeet

Michael Probst and Christy Sprague, Michigan State University

Locations: Richville and East Lansing	Application timings : 2-, 6-, and 14-leaf
Richville 2016	East Lansing 2016
Planting Date: April 16	Planting Date: April 18
Variety: Hilleshog 9616	Variety: ACH 059
Richville 2017	East Lansing 2017
Planting Date: April 18	Planting Date: May 17
Variety: ACH G515	Variety: ACH G515

Table 1. Sugarbeet injury (14 DAT) and yield resulting from sub-lethal rates of 2,4-D at three different growth stages.

			Richville				
	Enlist Duo	Su	garbeet inj	jury	E. Lansing	Richville	E. Lansing
Treatments ^{a,b}	rate	2-leaf	6-leaf	14-leaf	Injury ^c	Yield ^c	Yield ^c
	fl oz/A	%_	%-	 %	<u>%</u>	— ton/A —	—ton/A —
Non-treated control	0	0 a	0 a	0 a	0 a	23.3 a	30.9 a
2,4-D - 0.125%	0.10	5 ab	3 ab	4 ab	5 a	24.4 a	28.9 ab
2,4-D - 0.25%	0.20	10 b	9 bc	8 b	10 b	24.5 a	28.7 ab
2,4-D - 0.5%	0.40	16 c	10 c	15 c	15 c	24.0 a	28.8 ab
2,4-D - 1%	0.80	21 c	21 d	23 d	26 d	22.2 a	26.0 ab
2,4-D - 2%	1.60	31 d	34 e	40 e	36 e	16.8 b	24.8 b

Means followed by the same letter in the same column are not significantly different at $\alpha \le 0.05$.

Summary: Field studies were conducted in 2016 and 2017 to determine the effects of tankcontamination with sub-lethal rates of 2,4-D on sugarbeets. These studies were conducted at the MSU Agronomy Farm in East Lansing and the Saginaw Valley Research and Extension Center in Richville. Significant sugarbeet injury was observed with rates starting at 0.25% for the 2-, 6- and 14-leaf exposure at Richville and at East Lansing, combined over exposure stage. The 0.25% rate of 2,4-D caused 10% injury at the 2-leaf exposure timing at Richville and East Lansing, while the 0.5% rate was needed to cause 10% injury or greater at the 6-leaf and 14-leaf timings at Richville. The 2% rate of 2,4-D caused 31-40% injury at Richville and 36% injury at East Lansing. Despite sugarbeet injury at rates lower than the 2% rate, only the 2% rate of 2,4-D reduced sugarbeet yield. Yield was reduced 28% and 20% over the two years at Richville and East Lansing, respectively. 2,4-D exposure at the 14-leaf stage of sugarbeet also reduced yield at both locations, causing a 17% and 8% yield reduction at Richville and East Lansing, respectively. Based on previous research, the expected rate of tank-contamination following a three-rinse cleanout would fall somewhere within the 0125-0.5% range. While rates within this range caused injury to sugarbeet, they did not reduce yield. However, yield reduction is not the only concern following sugarbeet exposure to 2,4-D. The presence of 2,4-D residues in the harvested sugarbeets can result in their rejection. We are currently analyzing samples collected throughout both years to determine the level of 2,4-D residues 14 days after treatment and at harvest.

^a All treatments included 22 fl oz/A of Roundup PowerMax and 17 lb/100 gal of ammonium sulfate to simulate tank-contamination.

^b Rate percentages are based off of a field use rate for Enlist Duo of 4.75 pt/A.

^c Values are averaged across application timings.

AgBio **Research**

Herbicide-resistant waterhemp control in sugarbeet

Christy Sprague, Gary Powell, and Brian Stiles Michigan State University

Location: Isabella County	Application timings : PRE, 4-, 6-8, and 10-leaf beets
Planting Date: May 18, 2017	Herbicides: see treatments
Soil Type: Sandy loam	O.M.: 2.8 pH: 6.8
Replicated: 4 times	Variety: ACH G515MP

Table 1. Glyphosate (Group 9) and ALS (Group 2)-resistant waterhemp control in sugarbeet, 7 (July 17)

and 36 days after the last application (DAT) (mid-August) for various weed control programs.

		July 17 (7 DAT)	August 15	(36 DAT)
		Ethofumesate		Ethofumesate	:
Herbicide treatments ^a		3 pt (PRE)b	POST only	3 pt (PRE)b	POST only
		% co	ntrol ——	% cor	ntrol ——
Roundup - applied 3X (32/22/22 fl oz)	4- fb. 6- fb. 10-lf	88 b ^c	48 d	40 cd	21 e
Betamix - applied 3X (2/3/3 pt)	4- fb. 6- fb. 10-lf	95 ab	56 d	41 cd	16 e
Spin-Aid (phenmedipham) -3X (2/3/3 pt)	4- fb. 6- fb. 10-lf	96 a	66 c	56 c	23 e
Ethofumesate - 3X (1/1/1 pt)	4- fb. 6- fb. 10-lf	100 a	100 a	81 ab	77 ab
Warrant - 2X (3/3 pt)	4- fb. 6-lf	100 a		80 ab	
Ethofumesate + Warrant - 2X (2+3/2+3 pt)	4- fb. 6-lf		100 a		88 a
Spin-Aid + Warrant - $2X$ ($2+3/2+3$ pt)	4- fb. 6-lf		99 a		80 ab
Betamix + Warrant - $2X$ (2+3/3+3 pt)	4- fb. 6-lf	100 a	100 a	91 a	83 a
Betamix + Dual Magnum - 2X (2+1.33/3+1.33 pt)	4- fb. 6-lf		100 a		91 a
Betamix + Outlook - 2X (2 pt+10.5 fl oz/3 pt+10.5 fl oz)	4- fb. 6-lf		98 a		66 b

^a Roundup PowerMax was included in all postemergence treatments at the rates listed in the first treatment. These treatments also included AMS at 17 lb/100 gal. All POST applications of ethofumesate was applied with 1.5 pt/A of Destiny HC.

Summary: Several herbicide programs were evaluated for control of glyphosate- and ALS-resistant waterhemp. By mid-August treatments that provided the best control contained Ethofumesate, Warrant, or Dual Magnum postemergence in at least two applications. Unfortunately, these treatments were somewhat variable and only provided 77 to 91% control. While Betamix most likely will not be a viable option in future weed management programs, layby applications of Warrant or Dual Magnum will be important in a herbicide-resistant waterhemp management strategy. It also appears that ethofumesate applied preemergence and/or postemergence at higher rates may contribute to waterhemp control. We will be continuing to examine and refine waterhemp control strategies in sugarbeet in the future.

^b Control evaluations in this column are the POST herbicide treatments following a 3 pt/A application of ethofumesate PRE.

^c Means followed by the same letter in the group of two columns are not significantly different at $\alpha \le 0.05$.

Effect of Harvest Date on Sugarbeet Yield, Quality and Grower Income

Average of 8 years, 20 Locations

(Page 1 of 3)

Harvest: 6 Dates, Aug 15 to Nov 1 Seeding Rate: 4.5 inches

Plot Size: 6 rows X 38 ft, various reps

Beet Population: About 190 B/100'

No.	Harvest Date	Net \$/	Δ.	\$/To	n	RWSA	`	RWS ⁻		T/A		% SL	IC	% CJ	Р	Beets/ 100'
2	September 1	\$1,930	а	\$69	b	6216	е	218	d	28.5	С	15.2	d	94.2	С	187.3
3	September 15	\$1,922	а	\$63	С	7489	d	236	С	32.1	b	16.1	С	95.0	b	182.2
4	October 1	\$1,875	ab	\$59	d	8648	С	260	b	33.8	b	17.6	b	95.0	b	181.4
5	October 15	\$1,807	ab	\$52	е	9964	b	271	b	37.2	а	18.2	ab	95.3	b	187.1
1	August 15	\$1,793	ab	\$81	а	4679	f	209	d	22.5	d	14.7	d	93.7	d	186.0
6	October 30	\$1,752	b	\$50	е	10819	а	284	а	38.4	а	18.8	а	95.8	а	181.8
Avera	age	\$1,847	7	\$62		7969		246		32.1		16.8	3	94.8	3	184.3
LSD	5%	134.0		3.7		430.9		12.2		1.8		0.7		0.4		6.6
CV %	6	11.6		9.5		8.6		7.9		8.7		7.0	·	0.6		5.7

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Comments: After 8 years and 20 locations of Harvest Date trials, we are seeing very consistent data. Yield tends to increase by approximately 1.6 tons per week, and RWST increases by approximately 7.5 pounds per week. Tonnage and RWST increases are directly affected by rainfall in the two week period prior to harvest, but when looked at over multiple years of trials the increases are consistent. The largest tonnage increases are typically seen in August and September, and the largest increases in RWST tend to happen in late September and October. On average, the October harvest date shows a significantly lower payment per acre. Trials in 2015 and 2016 had lower than anticipated revenue at later harvest dates due to disease problems and environmental conditions. Trials in 2017 saw no significant difference in revenue per acre when early delivery incentive, freight, and fungicide application cost were factored into the net dollars per acre.

Effect of Havest Date on Sugarbeet Yield, Quality and Grower Income

MICHIGAN SUGAR Average of 3 Locations - 2017

(Page 2 of 3)

Trial Quality: Fair **Variety:** B-149N **Planted:** Blumfield West - May 9,

Shaffner - May 10, Sylvester - April 27

Harvested: See trts.

Plots: 6 rows X 38ft, 4 and 5 reps

Rhizoc Level: Low
Cerc Control: Good
Seeding Rate: 4.5 inches
Row Spacing: 22 inches

No.	Harvest Date	Net \$/A	\$/Ton	RWSA	RWST	T/A	% SUC	% CJP	Beets /100ft
3	September 15	\$1,688	\$63 ab	6993 b	253 a	28.0 c	17.6 a	93.9 bc	178.7
4	October 1	\$1,673	\$60 ab	8316 ab	284 a	29.4 bc	19.2 a	94.8 ab	165.5
5	October 15	\$1,557	\$50 bo	9284 a	279 a	33.5 ab	18.8 a	95.1 ab	163.9
2	September 1	\$1,481	\$63 ab	5201 c	214 b	24.6 cd	15.4 b	93.4 bc	167.2
1	August 15	\$1,366	\$70 a	3868 c	195 b	20.0 d	14.0 b	92.9 c	174.6
6	November 1	\$1,264	\$44 c	9630 a	274 a	35.2 a	18.3 a	95.8 a	162.8
Ave	erage	\$1,505	\$58	7215	250	28.5	17.2	94.3	168.8

Average	\$1,505	\$58	7215	250	28.5	17.2	94.3	168.8
LSD 5%	n.s.	12.4	1378.1	34.8	4.7	2.0	1.5	n.s.
CV %	13.8	11.5	10.3	7.5	9.0	6.2	0.9	9.5

Comments: Harvest Date trials continued in 2017. Dry periods in all locations during September slowed yield increases. October rains increased yield but slowed increases in sugar content. Thin stands at one location limited yield potential. When early delivery incentive was factored in to payment, there were no statistical differences between any harvest date.

Blumfield West, Richville, MI - 2017

Trial Quality: FairSoil Info: Sandy Clay LoamRhizoc Level: LowVariety: B-149N% OM: 2.6 pH: 7.7 CEC: 13.0Cerc Control: GoodPlanted: May 9Above Opt: P, KProblems: Extremely DryHarvested: See trts.High: Mn Med: BSeptemberPlots: 6 rows X 38 ft, 5 repsAdded N: 140 lbs.Seeding Rate: 4.5 inches

Row Spacing: 22 inch Prev Crop: Rve (Fall Cover)

110	w Spacing. ZZ IIIC	11		FIEV CIUP	. Trye (i ai	COVEI					
No.	Harvest Date	Net \$/A	\$/T	RWSA	RWST	T/A	% SUC	% CJP	Beets /100ft	GDD*	Rain Inch*
4	October 1	\$1,358	\$56 c	7471 a	290 a	25.8 a	19.3 a	95.4 b	155.0 b	35	0.5
2	September 1	\$1,226	\$68 b	4671 b	253 b	19.0 b	17.6 b	94.3 c	180.0 b	32	1.46
1	August 15	\$1,226	\$80 a	3728 b	241 b	15.5 b	16.6 c	94.6 c	206.7 a	34	1.1
5	October 15	\$1,161	\$47 d	7704 a	288 a	26.8 a	19.3 a	95.3 b	169.4 b	26	2.3
6	November 1	\$1,104	\$43 e	9027 a	290 a	31.1 a	19.1 a	96.2 a	173.7 b	15	1.85
Ave	erage	\$1,215	\$59	6520	272	23.6	18.4	95.2	176.9	28.0	1.4
LSI	O 5%	n.s.	3.3	1680.7	14.7	5.4	0.9	0.6	24.4		
CV	%	15.5	4.1	19.1	4.0	17.2	3.7	0.5	10.3		

^{*}GDD (Growing Degree Days): an average daily amount for the 2 weeks prior to that harvest date.

Net \$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a trial average RWST.

^{*}Rain Inch: Actual rainfall amount including 2 weeks prior to the planting date.

Comments: Very dry September weather prevented a September 15th harvest date. A lack of precipitation in late August and early September slowed the increase in yield over that time period.

Effect of Harvest Date on Sugarbeet Yield, Quality and Grower Income

MICHIGAN SUGAR Shaffner Brothers LLC., Freeland, MI - 2017

(Page 3 of 3)

Trial Quality: Fair Variety: B-149N Planted: May 10

Harvested: See trts.

Plots: 6 rows X 38 ft, 5 reps

Row Spacing: 22 inches

Soil Info: Loam % OM: 3.5 pl

% OM: 3.5 pH: 7.7 CEC: 13.7 Above Opt: P Below Opt: K

Med: Mn, B

Problems: Some water damage Seeding Rate: 4.5 inches

Rhizoc Level: Low

Cerc Control: Good

Added N: 140 lbs.
Prev Crop: Corn

No.	Harvest Date	Net \$/A	\$/Ton	RWSA	RWST	T/A	% SUC	% CJP	Beets/ 100ft	GDD*	Rain Inch*
3	September 15	\$1,930 a	\$65 a	7354 b	234 b	31.5 b	16.1 b	94.4 bc	224.5 a	26	0.3
4	October 1	\$1,918 a	\$62 a	8609 b	260 a	33.2 b	17.5 a	95.2 abc	201.3 ab	36	0.2
5	October 15	\$1,885 a	\$52 bc	10160 a	261 a	39.0 a	17.4 ab	95.7 ab	199.3 b	26	2.9
6	November 1	\$1,518 b	\$46 c	10492 a	259 a	40.5 a	17.2 ab	96.3 a	190.8 b	14	3.0
2	September 1	\$1,499 b	\$62 a	4733 c	187 c	25.0 c	13.3 c	93.7 c	197.6 b	32	8.0
1	August 15	\$1,152 b	\$56 ab	2923 d	137 d	20.6 d	10.6 d	91.2 d	180.6 b	34	3.1
Av	erage	\$1,651	\$57	7378	223	31.6	15.4	94.4	199.0	28	1.7
LS	D 5%	354.8	8.3	1259.4	24.1	4.2	1.3	1.6	23.7		
C/	/ %	16.3	11.0	12.9	8.2	10.0	6.4	1.3	9.0		

Comments: This trial suffered some water damage in June. Certain replications were avoided due to the damage. Tonnage increased consistenly by approximately 2.5 tons/week through the October 15th harvest date and then leveled off. Sugar content increased through October 1st, but saw no significant increase after that harvest date.

Sylvester, Akron, MI - 2017

Trial Quality: Fair Variety: B-149N Planted: April 27 Harvested: See trts.

Plots: 6 rows X 38 ft, 4 reps Row Spacing: 22 inches Soil Info: Sandy Loam % OM: 2.5 pH: 7.4 CEC: 9.8 Above Opt: P, K

Med: Mn Low: B
Added N: 160 lbs.

Rhizoc Level: Low Cerc Control: Good Problems: Thin stand/dry Seeding Rate: 4.5 inches

Ro	ow Spacing: 22 in	nches		Prev Cro	p : Whea	at					
No.	Harvest Date	Net \$/A	\$/Ton	RWSA	RWST	T/A	% SUC	% CJP	Beets/ 100ft	GDD*	Rain Inch*
4	October 1	\$1,742 a	\$63 b	8869 a	302 a	29.4 c	20.8 a	93.7 ab	140.3	36	0.1
1	August 15	\$1,721 a	\$74 a	4955 d	207 d	23.8 d	14.9 d	92.9 bc	136.6	34	0.9
2	September 1	\$1,717 a	\$59 b	6198 c	201 d	29.9 bc	15.2 d	92.3 c	123.9	31	0.9
3	September 15	\$1,698 a	\$61 b	7371 b	250 c	29.4 c	17.8 c	92.6 bc	122.7	26	0.4
5	October 15	\$1,625 a	\$51 c	9989 a	287 ab	34.9 a	19.6 ab	94.2 a	122.8	24	0.4
6	November 1	\$1,171 b	\$43 d	9371 a	274 b	34.2 ab	18.6 bc	94.8 a	123.9	17	0.0
Av	erage	\$1,612	\$59	58	7792	253.6	30.3	17.8	128.4	28	0.5
LS	D 5%	253.8	5.8	5.9	1080.1	20.5	4.3	1.3	37.2		
C١	/ %	10.4	6.5	6.6	9.1	5.3	9.4	4.8	19.2		

^{*}GDD (Growing Degree Days): an average daily amount for the 2 weeks prior to that harvest date.

Comments: This trial had emergence issues resulting in a thinner than desired stand. Dry conditions throughout the season also impacted yield potential. In September yield was stagnant, but October rains boosted yield on later dates. Sugar content was the highest near the end of the dry period on October 1st.

Net \$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment and a trial average RWST.

^{*}Rain Inch: Actual rainfall amount including 2 weeks prior to the planting date.

Population Trial - 22 Inch Rows

Gardner Farms, Croswell - 2017

Trial Quality: Fair Soil Info: Loam Rhizoc Control: Good control:

Variety: C-RR059 Fertilizer: PPI: 19 gal of 28%; 2x2: Quadris I.F. & 8 leaf

Planted: April 29 15 gal of 10-34-0; S.D.: Cerc Control: Fair Control:

Harv/Samp: Oct 13 / Oct 12 20 gal of 28% 1. Proline, 2. Gem +

EBDC, 3. Inspire,

Plot Size:2 repsPrev Crop:Soybeans4. Super TinRow Spacing:22 inchWeather:Good all season, exceptOther Pests:Late season leaf

Seeding Rate: See treatments for crust at emergence diseases

Treatment	\$/A	RWSA	RWST	T/A	% Sugar	% CJP	Population 100 Ft. 42 Days
71,000	\$1,642	9326	309	30.2	20.7	94.8	176
65,000	\$1,608	9275	312	29.3	21.0	94.7	164
59,000	\$1,525	8665	291	29.7	19.8	94.4	150
Average	\$1,592	9089	304	29.8	20.5	94.6	163
LSD 5%		ns	ns	ns	ns	ns	ns
CV %	_	_	_	_	_	_	_

Comments: USE DATA WITH CAUTION. Only 2 reps were able to be used for data. Trial was originally set up as 3 replications, but yields in 1 rep were not consistent. Previous research has found that emerged populations between 175 and 225 beets per 100 foot usually provide the best combination of yield and quality. Emergence in this trial were lower than normal due to soil crusting after planting. Emerged populations were about 60% of the planted populations. Typically, emerged populations usually range from 65-80%. Lower than normal emergence may be the reason the highest population performed the best. Note that 75% emergence in 22" rows would be about 224, 205, and 186 emerged plants per 100 foot of row for planting populations of 71000, 65000, and 59000, respectively.

\$/A: Gross payment unless noted as net. Calculated assuming a \$40 payment, a company average RWST of 275, and early delivery premium.

Bold: Results are not statistically different from top ranking treatment in each column.

Determine the Number of Days and Growing Degree Days for Sugarbeets to Reach Row Closure

MICHIGAN SUGAR Average of 24 Trials (2015, 2016, 2017)

(Page 1 of 6)

No.	Treatment	Avg. Plant	GDD Accum	GDD	Days Accum	Days	% Emerg	Soil Temp	Soil Moisture	Rain
1	Planted	25-Apr	0	0	0	0	0	50	86	0.9
2	Early Emergence	7-May	196	195	12	12	21	52	91	1.3
3	Small Cotyledon	10-May	250	56	15	3	44	55	88	0.2
4	Cotyledon	13-May	317	65	18	3	59	58	86	0.4
5	Cotyl - 2 Leaf	17-May	386	70	22	4	62	58	83	0.3
6	2 Leaf	20-May	474	88	26	4	62	60	82	0.2
7	2 - 4 Leaf	24-May	569	97	29	4	63	62	85	0.4
8	4 Leaf	29-May	668	98	33	5	63	63	81	0.3
9	4 - 6 Leaf	31-May	767	99	36	3	63	63	84	0.5
10	6 Leaf	4-Jun	862	127	39	4	63	64	81	0.1
11	8 Leaf	9-Jun	994	133	43	4	63	66	80	0.4
12	10 Leaf	13-Jun	1124	131	48	4	63	67	81	0.6
13	12 Leaf	17-Jun	1258	134	52	4	63	69	87	1.3
14	14 Leaf	21-Jun	1378	120	56	4	63	69	85	0.7
15	16 Leaf	24-Jun	1496	118	60	4	62	70	82	0.6
16	18 Leaf	28-Jun	1611	114	63	3	62	71	79	0.3
17	20 Leaf (Full Canopy)	30-Jun	1716	106	66	3	62	72	81	0.2
Aver	rage		827.3	103.1	36.2	3.9	55.2	63.0	83.7	0.5
LSD			38.4	18.3	1.6	0.5	3.2	2.6	5.3	0.4
CV%	6		4.7	17.9	4.4	13.3	5.9	4.2	6.4	70.6

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Growing Degree Days (Base 34): Began counting at planting date.

GDD: Growing Degree Days for each growth stage, GDD Accum: Growing Degree Days Accumulating

Soil Temp: Degrees F at 2-4 inches.

Soil Moisture: % of Field Capacity (0-4 inches). 50% FC: Dry surface, moist at 1 inch;

60-70% FC: moist at 1/2 inch; **80-90% FC:** Surface mostly dry, moisture just below soil surface;

95-100% FC: Surface wet, no standing water.

Rain: Amount of rain in inches for each growth stage period.

Comments: Growing Degree Days (GDD) base 34 values were determined for sugarbeet growth stages from early emergence until canopy closure. The number of days to reach each growth stage were also determined. The average planting date was April 25th. For the most part, weather was favorable for sugarbeet growth in the trials. However, some trials experienced unfavorable conditions such as dry soil, crusting, and/or flooding. On average it took 12 days for sugarbeets to emerge and 66 days to achieve full canopy. The quickest site to emerge took only 6 days and the longest took 18 days. On average it took 195 GDD for sugarbeets to emerge and 1716 GDD to reach full canopy. The trials received around 8 inches of rain from 10 days before planting until row closure, or about 0.7 inches per week. This information is considered to be accurate, however, any one field could vary considerably from these findings. The most common soil type was sandy clay loam, however, there were also sandy loams, silt loams and clay loams. These were good quality soils, the average soil organic matter content, soil pH and CEC was 3%, 7.3 and 12.5, respectively. Thirty five pounds of nitrogen was applied 2X2 at planting.

Determine the Number of Days and Growing Degree Days for Sugarbeets to Reach Row Closure

MICHIGAN SUGAR Average of 8 Trials in 2017

(Page 2 of 6)

Trial Quality: Good Soil Info: Sandy Loam to Clay Loam Disease Control: Good

Variety: Several OM: 2.9%; pH: 7.3; CEC: 11.9 Problems: Crusting, flooding,

Planted: Apr 27 (Avg of 8) Nutrients: Favorable drought

Plot Size: 4 rows X 20 ft, 4 reps Added N: ~ 100 lbs, (35 lb 2X2) Rainfall: ~ 1.0 inch / week

Previous Crops: Corn, Soys, Wheat

No.	Treatment	Plant	GDD Accum	GDD	Days Accum	Days	% Emerg	Soil Temp	Soil Moisture	Rain
1	Planted	27-Apr	0	0	0	0	0.0	52	87	1.2
2	Early Emergence	11-May	204	204	14	14	24	54	92	1.6
3	Small Cotyledon	14-May	266	62	17	4	52	54	88	0.3
4	Cotyledon	17-May	353	88	21	3	58	60	84	0.2
5	Cotyl - 2 Leaf	21-May	435	82	24	4	61	56	85	0.3
6	2 Leaf	25-May	538	103	29	4	62	59	86	0.4
7	2 - 4 Leaf	29-May	646	108	32	4	63	61	87	0.2
8	4 Leaf	1-Jun	740	94	36	3	63	62	84	0.3
9	4 - 6 Leaf	4-Jun	842	105	39	3	63	64	84	0.2
10	6 Leaf	7-Jun	944	102	42	3	62	67	81	0.1
11	8 Leaf	11-Jun	1086	142	46	4	62	68	84	0.8
12	10 Leaf	16-Jun	1243	158	51	4	63	71	88	1.3
13	12 Leaf	20-Jun	1399	156	56	4	63	70	91	1.6
14	14 Leaf	24-Jun	1514	116	60	4	63	69	90	1.4
15	16 Leaf	27-Jun	1632	118	64	4	62	70	85	1.2
16	18 Leaf	30-Jun	1741	107	67	3	63	71	81	0.6
17	20 Leaf (Full Canopy)	3-Jul	1833	94	69	3	62	74	84	0.3
Aver	rage		906.7	108.0	39.1	4.0	55.7	63.7	85.9	0.7
LSD	5%		47.1	31.0	3.1	1.2	4.9	3.7	9.3	0.9
CV%	(o		5.2	29.0	8.1	29.8	8.8	5.8	10.9	136.2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Growing Degree Days (Base 34): Began counting at planting date.

GDD: Growing Degree Days for each growth stage, GDD Accum: Growing Degree Days Accumulating

Soil Temp: Degrees F at 2-4 inches.

Soil Moisture: % of Field Capacity (0-4 inches). 50% FC: Dry surface, moist at 1 inch;

60-70% FC: moist at 1/2 inch; 80-90% FC: Surface mostly dry, moisture just below soil surface;

95-100% FC: Surface wet, no standing water.

Rain: Amount of rain in inches for each growth stage period; Avg. 1 inch per week.

Planted: Apr 26 (Avg of 8)

Determine the Number of Days and Growing Degree Days for Sugarbeets to Reach Row Closure

MICHIGAN SUGAR Average of 8 Trials in 2016

(Page 3 of 6)

Trial Quality: Good Soil Info: Sandy Loam to Silt Loam Disease Control: Good Problems: Crusting, flooding,

Variety: Several **OM:** 2.9% **pH:** 7.1 **CEC**: 12.4

> **Nutrients:** Favorable drought

Added N: ~ 100 lbs, (35 lbs 2X2) Plot Size: 4 rows X 20 ft, 4 reps

Rainfall: ~ 0.5 inches / week

Previous Crops: Corn, Soys, Wheat

No.	Treatment	Plant	GDD Accum	GDD	Days Accum	Days	% Emerg	Soil Temp	Soil Moisture	Rain
1	Planted	26-Apr	0	0	0	0	0	51	83	0.5
2	Early Emergence	8-May	150	150	12	12	17	53	89	1.0
3	Small Cotyledon	11-May	203	53	16	3	35	58	91	0.5
4	Cotyledon	15-May	267	65	19	4	56	60	86	0.1
5	Cotyl - 2 Leaf	18-May	331	63	22	3	62	61	84	0.5
6	2 Leaf	21-May	404	73	26	3	63	62	85	0.0
7	2 - 4 Leaf	24-May	491	87	29	3	65	65	77	0.1
8	4 Leaf	28-May	602	111	33	4	65	67	78	0.3
9	4 - 6 Leaf	31-May	704	101	35	3	65	64	76	0.2
10	6 Leaf	3-Jun	802	99	38	3	66	64	81	0.2
11	8 Leaf	6-Jun	914	114	42	4	66	67	71	0.1
12	10 Leaf	10-Jun	1020	106	46	4	66	64	79	0.3
13	12 Leaf	14-Jun	1146	126	51	4	66	70	75	0.3
14	14 Leaf	18-Jun	1268	123	54	3	64	69	78	0.4
15	16 Leaf	21-Jun	1378	109	57	3	64	73	73	0.3
16	18 Leaf	24-Jun	1485	108	60	3	64	71	77	0.2
17	20 Leaf (Full Canopy)	27-Jun	1596	111	64	3	63	70	75	0.1
Avei	rage		750.6	94.0	35.5	3.7	55.7	64.0	79.9	0.3
LSD	5%		79.7	27.0	2.1	1.0	6.5	6.4	11.4	0.4
CV	%		10.7	29.0	5.9	27.7	11.8	10.1	14.5	144.2

Means followed by the same letter are not significantly different. Duncans New MRT 5%.

Growing Degree Days (Base 34): Began counting at planting date.

GDD: Growing Degree Days for each growth stage, GDD Accum: Growing Degree Days Accumulating

Soil Temp: Degrees F at 2-4 inches.

Soil Moisture: % of Field Capacity (0-4 inches). 50% FC: Dry surface, moist at 1 inch; 60-70% FC: moist at 1/2 inch

80-90% FC: Surface mostly dry, moisture just below soil surface. 95-100% FC: Surface wet, no standing water.

Rain: Amount of rain in inches for each growth stage period; Avg. 0.5 inches per week.

Determine the Number of Days and Growing Degree Days for Sugarbeets to Reach Row Closure

MICHIGAN SUGAR Average of 8 Trials in 2015

(Page 4 of 6)

Disease Control: Good

drought

Problems: Crusting, flooding,

Trial Quality: Good Soil Info: Sandy Loam to Clay Loam Variety: Several

OM: 3.3%; **pH:** 7.4; **CEC**: 13.2

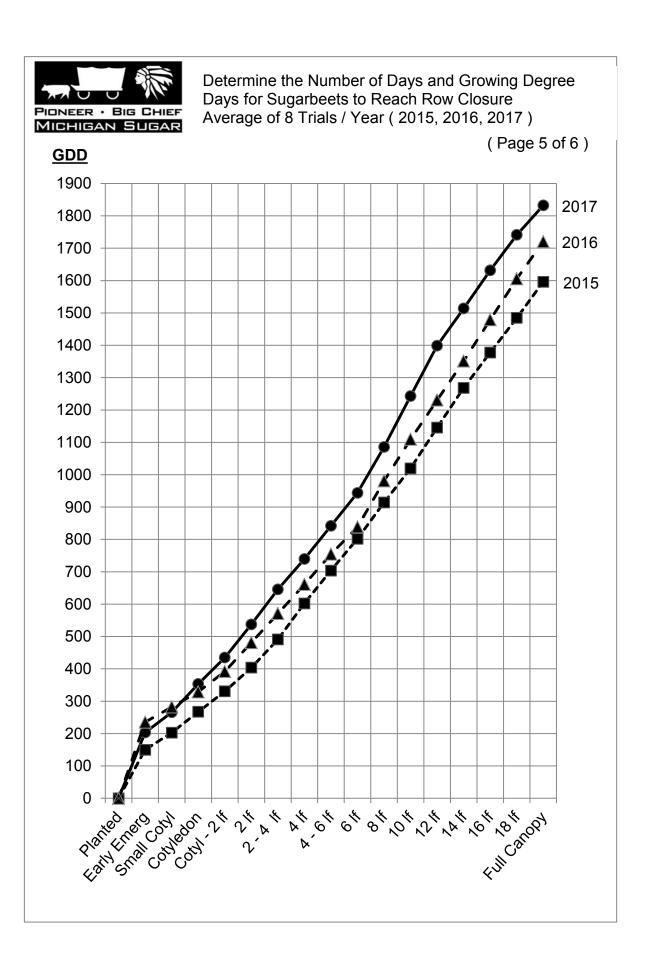
Planted: Apr 22 (Avg of 8) **Nutrients:** Favorable

Added N: ~ 100 lbs, (35 lbs 2X2) Plot Size: 4 rows X 20 ft, 4 reps Rainfall: ~ 0.8 inches / week

Previous Crops: Corn, Soys, Wheat

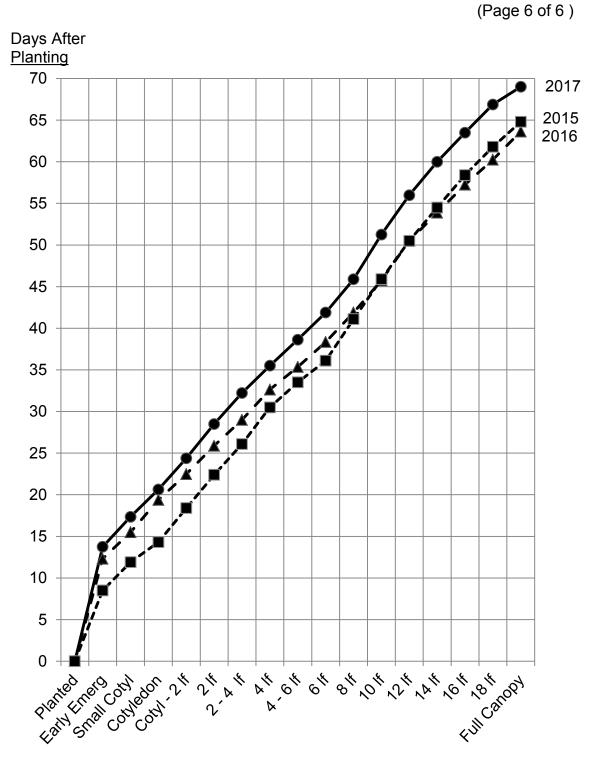
No.	Treatment	Plant	GDD Accum	GDD	Days Accum	Days	% Emerg	Soil Temp	Soil Moisture	Rain
1	Planted	22-Apr	0	0	0	0	0	47	89	1.0
2	Early Emergence	1-May	236	232	9	9	21	50	93	1.2
3	Small Cotyledon	5-May	282	52	12	4	45	53	85	0.0
4	Cotyledon	7-May	329	44	14	3	61	55	88	8.0
5	Cotyl - 2 Leaf	12-May	392	66	18	4	61	58	81	0.2
6	2 Leaf	16-May	481	89	22	4	61	60	74	0.1
7	2 - 4 Leaf	20-May	571	97	26	4	62	61	90	1.0
8	4 Leaf	26-May	661	90	31	7	61	62	82	0.3
9	4 - 6 Leaf	29-May	754	92	34	3	62	62	93	1.1
10	6 Leaf	4-Jun	838	181	36	6	61	63	82	0.0
11	8 Leaf	9-Jun	981	142	41	5	61	64	85	0.2
12	10 Leaf	13-Jun	1109	129	46	5	61	65	76	0.0
13	12 Leaf	17-Jun	1231	121	51	4	61	66	95	2.0
14	14 Leaf	21-Jun	1352	121	55	4	61	68	88	0.3
15	16 Leaf	25-Jun	1479	128	58	4	61	68	88	0.3
16	18 Leaf	29-Jun	1606	127	62	4	60	70	78	0.0
17	20 Leaf (Full Canopy)	2-Jul	1721	115	65	3	60	72	84	0.3
Avei	rage		824.8	107.4	34.0	4.2	54.0	61.4	85.3	0.5
LSD	5%		86.3	37.6	2.7	1.0	1.8	0.1	2.5	0.1
CV%	/o		10.6	35.3	8.0	24.5	3.3	0.1	2.9	18.4

Means followed by the same letter are not significantly different. Duncans New MRT 5%.


Growing Degree Days (Base 34): Began counting at planting date.

GDD: Growing Degree Days for each growth stage, GDD Accum: Growing Degree Days Accumulating

Soil Temp: Degrees F at 2-4 inches.


Soil Moisture: % of Field Capacity (0-4 inches). 50% FC: Dry surface, moist at 1 inch; 60-70% FC: moist at 1/2 inch 80-90% FC: Surface mostly dry, moisture just below soil surface. 95-100% FC: Surface wet, no standing water.

Rain: Amount of rain in inches for each growth stage period; Avg. 0.8 inches per week.

Determine the Number of Days and Growing Degree Days for Sugarbeets to Reach Row Closure Average of 8 Trials / Year (2015, 2016, 2017)

Sugar beet activities of the USDA-ARS East Lansing conducted in cooperation with Saginaw Research & Extension Center during 2017

Mitch McGrath, Linda Hanson, Tom Goodwill, and Holly Corder

Evaluation and rating plots were planted at the Saginaw Valley Research & Extension Center (SVREC) in Frankenmuth, MI in 2017 that focused on Cercospora leaf spot (CLS) and Rhizoctonia crown and root rot (CRR) disease performance of a wide range of *Beta vulgaris* materials. CLS and CRR trials were conducted in conjunction with the Beet Sugar Development Foundation (BSDF) and CLS trials included USDA-ARS cooperator germplasm as well as germplasm screening for the National Plant Germplasm System. All trials were planted following normal fall and spring tillage operations with a USDA-ARS modified John Deere / Almaco research plot planter. Plots were 15 ft long planted on 20 in rows. Weeds were controlled by a pre-plant application of ethofumesate, followed by intervals of post-plant mixtures of phenmedipham, desmedipham, triflusulfuron methyl, and clopyralid (4 times), and finally with S-metolachlor. Hand weeding was done as needed to control larger weeds. We thank farm management and Michigan Sugar for their generous assistance in thinning and agronomic evaluations. Only two experiments are reported here in the interest in conserving words and engaging the attention of sugar beet growers.

Two genetic Recombinant Inbred (RI) populations were examined for sugars, the HSB6 population which is derived from a cross between C869 (moderate sugar) and L19 (high sugar) and the AYA6 population which was derived from a cross between C869 and wild beet (low sugar) (Table 1). A great deal of variability was observed among the RI lines, and since each one of these lines is genetically fixed, differences relate to their genetic performance in a common environment. These populations will be used to identify genes influencing sucrose content via modern genetic methods. Values measured are in line with expectations, with mean sucrose values of both RI lines showing a wide range of values.

Table 1: Summary statistics for RI lines constructed to deduce the genetics of sucrose content in beets.

Population	NaRows	Sucrose (NIR)	sd.dev.	range
AYA6	178	17.21	2.33	15.15
C869ICMS	10	16.12	0.99	3.06
HSB6	221	18.25	1.71	8.39
L19/2-ib	5	21.33	1.16	2.53

Agronomic observation of a wide range of previous East Lansing releases and candidate releases was done in support of efforts to understand genetic diversity as related to performance (Table 2). Genome sequencing of most of these entries is in progress, with assistance of the Beet Sugar Development Foundation members. Also included were representatives of beet crop types (fodder, table, and chard). Stand was generally excellent on the comparatively sandy soils where the trial was conducted. Results conformed to expectations with the lowest sugars and yield among the table beet materials, low sugar but higher yield among fodder beet accessions, higher sugar but low yield in chards, and higher sugar and yield among sugar beets. Direct plot weights are reported. Legacy sugar beet materials (generally indicated by a lower EL- or SR-prefaced name in Table 4) were generally lower in sucrose.

Table 2: Agronomic evaluation of previous East Lansing germplasm releases, potential germplasm releases, and crop types. Bold is not significantly different from the best.

Entry	Accession	Name	(Weight@lhc)	Purity[NIR)	Sucrose NII
Entry			Weight (lbs)		·
978	EL-A024969	SR101	19.33	95.66	18.50
985	EL-A012189	SR96	18.67	95.30	18.18
951	EL-A1402159	NICStorage&SRIRhizII(GrpII) &8)	16.67	95.79	17.92
908	EL-A012200	EL52	12.67	94.22	17.63
983	EL-A012172	SR94	18.67	95.37	17.56
963	EL-A021482	EL50/2	8.00	94.97	17.46
1007	EL-A010286	SP85100	16.00	94.72	17.26
968	EL-A012174	SR97	17.33	94.77	17.14
909	EL-A013523	EL53@2)	23.33	95.79	17.09
974	EL-A12-00002	SF"B3"	12.67	95.91	16.69
1009	EL-A010292	SP85550	20.00	94.53	16.62
954	EL-A1402163	Nematode Storage Cerc Rhizoc	15.33	95.62	16.60
919	EL-A027007	EL63	16.67	95.97	16.45
1017	EL-A024953	SR98®©Cerc@not@noculated)	18.00	95.31	16.34
907	EL-A12-00030	EL51	8.67	94.84	16.30
988	EL-A024983	SR99	15.33	95.21	16.16
987	EL-A027149	SR98x	16.67	94.40	16.11
984	EL-A012168	SR95	18.00	96.53	16.10
887	EL-A15-00006	SR102	20.67	95.01	16.02
980	EL-A012187	SR80	28.67	95.92	15.95
916	EL-A021740	EL60	28.67	96.12	15.94
962	EL-A027152	SR100	22.00	94.34	15.90
E17	E17	E174(legacy@commercial@hybrid)	18.67	93.95	15.90
981	EL-A012148	SR87	20.67	96.03	15.83
958	EL-A022776	EL64, pEL63	8.00	95.65	15.77
933	EL-A15-00005	storage	20.67	95.24	15.74
952	EL-A1402161	NIC Nematode Sucrose roup	19.33	94.80	15.74
940	EL-A16-00016	(entryFC16)-(BestIFCILSRIXIBestIELILSR)	39.33	95.24	15.70
925	EL-A029687	SF"B2"	16.00	94.50	15.64
914	EL-A022775	EL58	15.33	97.40	15.61
910	EL-A021483	EL54@Hero@M-@fertile	11.33	97.07	15.52
961	EL-A029770	EL62	12.00	95.66	15.47
923	EL-A012858	EL0204	20.67	95.96	15.47
924	EL-A012838	SF"A"	8.67	95.35	15.24
915	EL-A029768	EL59	9.33	94.99	15.24
911		EL55麼Old⑤eed"		96.04	15.23
	EL-A013698	EL65	12.00		
921	EL-A027017		16.67	95.94	15.15
1017	EL-A024953	SR98&Cerc@seedling@Rhizoc@noc)	20.67	94.29	15.13
922	EL-A027143	EL66	16.67	95.54	15.10
996	EL-A022662	C37	13.33	93.79	14.95
917	EL-A029769	EL61	12.67	95.28	14.72
982	EL-A012191	SR93	22.67	95.44	14.66
904	EL-A012181	EL48	12.00	94.40	14.58
965	EL-A015030	SP7322	32.67	93.72	14.43
913	EL-A022809	EL57, ISF IMixer II B"	11.33	94.47	14.24
997	EL-A009913	L19 1 1992)	8.67	90.36	14.18
899	EL-A010299	EL42	8.67	95.10	13.49
1012	EL-A029004	M1-3	18.67	93.42	12.81
1016	EL-A024967	storageBelections	12.00	92.63	12.14
912	EL-A022799	EL56	7.33	93.26	10.90
1018	EL-A011917	LUCULLUS® wiss® thard	7.33	86.71	10.13
995		Ruby Queen dable beet	2.00	89.44	9.38
989	EL-A1402169	Rhubarb\subsets\text{wiss}\text{thard}	8.00	80.05	8.06
994	EL-A1400588	W357Bitable beet	2.00	82.73	7.77
1019	EL-A011928	MAMMOTH RED fodder beet	17.33	90.81	6.29
993	EL-A16-00011	Wintergoldffodder beet	16.67	90.01	6.17
Burpee		Detroit@Dark@Red@table@beet	4.67	87.59	5.84
	mean		16.00	94.01	14.72
	Favalue		11.632***	11.212***	11.192***
	ravalue		11.00	11.C1U	11.1JU

PRESENTED IN PARTNERSHIP

EDUCATION

Publications, meetings seminars, web resources, clinics, reporting sessions.

Michigan Sugar Company 122 Uptown Drive, Suite 300 Bay City, MI 48708

RETURN SERVICE REQUESTED

BROUGHT TO YOU BY THESE PARTNERS:

